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ABSTRACT 

The onset of mechanical failures due to metal fatigue has been a constant source of 

concern for engineers ever since the initial discoveries of fatigue-related phenomena in 

the early 1800s.  Today, aerospace engineers still grapple with the qualitative and 

quantitative understanding of fatigue behavior in the design and testing of turbine-driven 

jet engines.  The Department of Defense has taken a very active role in addressing this 

problem with the formation of the National High Cycle Fatigue Science & Technology 

Program in 1994.  The primary goal of this program is to further the understanding of 

high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative 

impact of HCF on aerospace operations.  This research supports this program by 

addressing the fatigue strength testing guidance currently provided by the DoD to engine 

manufacturers, with the primary goal to investigate current methods and recommend a 

test strategy to characterize the fatigue strength of a material at a specified number of 

cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. 

The research utilized the benefits of numerical simulation to initially investigate 

the staircase method for use in fatigue strength testing.  The staircase method is a 

commonly used fatigue strength test, but its ability to characterize fatigue strength 

variability is extremely suspect.  A modified staircase approach was developed and 

shown to significantly reduce bias and scatter in estimates for fatigue strength variance.  

Experimental validation of this proposed test strategy was accomplished using a dual-

phase Ti-6Al-4V alloy.  The HCF behavior of a second material with a very different 

microstructure (beta annealed Ti-6Al-4V) was also investigated.  The random fatigue 

limit (RFL) model, a recently developed analysis tool, was investigated to characterize 

stress-life behavior but found to have difficulty representing fatigue life curves with sharp 

transitions.  Two alternative models (bilinear and hyperbolic) were developed based on 

maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior.  

These models provided a good fit to the experimental data for the dual-phase Ti-6Al-4V 

and were applied to the beta annealed variant in order to estimate stress-life behavior 

using a small-sample approach.  Based on this research, designers should be better able to 

make reliable estimates of fatigue strength parameters using small-sample testing.
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ANALYSIS OF METHODS FOR DETERMINING HIGH CYCLE FATIGUE 

STRENGTH OF A MATERIAL WITH INVESTIGATION OF Ti-6Al-4V 

GIGACYCLE FATIGUE BEHAVIOR 

 
 

I. INTRODUCTION 

Engineering structures are designed to withstand a variety of in-service loading and 

environmental conditions specific to their intended application.  For turbine components 

used in jet aircraft engines, this operating environment is a harsh regime characterized by 

high temperatures, high mean loads, and high-frequency vibrations.  Materials selected 

for use under these conditions must be resistant to a variety of damage mechanisms to 

include yielding, creep deformation, fatigue crack growth, fretting fatigue, and oxidation.  

The hazards posed by these damage mechanisms have been a constant source of concern 

to designers throughout the jet aircraft age.  With the development and use of high-

strength, creep-resistant, oxidation-resistant alloys, a remaining challenge to the turbine 

designer becomes fatigue resistance – i.e., the ability of a component subjected to cyclic 

loading below the material’s ultimate strength to operate without functional or 

catastrophic failure due to the accumulation of microscopic damage. 

The engineering community’s efforts to prevent mechanical failures due to fatigue 

pre-date the aviation era by some eighty years.  The first study of metal fatigue is 

believed to be the work of German mining engineer W. A. J. Albert around 1829 [6], 

with the introduction of the term fatigue as a mechanism of metal failure credited to 

Poncelet in 1838 [70].  This era saw a rise in fatigue-related research across several 

countries in response to the increasing use of ferrous materials in engineering structures, 

and the resulting fatigue failures of components such as stagecoach and railway axles, 

shafts, gears, beams, and bridge girders [30; 83].  The German engineer August Wöhler is 

credited by many as the “grandfather” of fatigue due to his exhaustive fatigue tests of 

smooth and notched railway axles beginning in the 1850s.  In addition to the introduction 

of the widely-used S-N diagram (a plot of the number of cycles to failure at a given stress 

or strain level), Wöhler developed design strategies for avoiding fatigue failure and 

demonstrated that fatigue was affected by not only cyclic stresses but also the 
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accompanying steady (mean) stresses [91].  His work also led directly to the concept of a 

fatigue (or endurance) limit which represents the theoretical maximum cyclic load a 

material can withstand indefinitely without risk of fatigue failure [83].  As the golden age 

of the railroads gave way to the automobile era, significant advances in fatigue research 

continued, to include the mean stress effect studies by Gerber and Goodman, the 

development of fatigue safety diagrams by Haigh, investigation of reversed loading 

phenomena by Bauschinger, investigation of the notch effect on fatigue limit by Heyn, 

formulation of empirical laws to characterize fatigue limit by Basquin, the introduction of 

the crack growth energy balance by Griffith, life estimation under variable loading by 

Palmgren, and the recognition of the statistical nature of fatigue by Weibull [30; 83; 88].  

Fatigue-related research accelerated as the aviation industry grew, with the formation of 

the International Committee on Aeronautical Fatigue in 1951.  Following the catastrophic 

failure of three de Havilland Comet airliners in 1953 and 1954, metal fatigue received 

even greater attention by the aerospace industry.  Countless researchers from across the 

globe have since devoted immeasurable amounts of time and money for the purpose of 

characterizing and preventing fatigue failures, with an estimated ten fatigue-related 

publications per day now being published around the world [88]. 

Despite this enormous amount of research, fatigue failures continue to be a major 

problem in engineering design.  The U.S. Department of Commerce, National Institute of 

Standards and Technology (formerly National Bureau of Standards), reported in a 1983 

study that the total economic impact of fracture of materials was $119 billion in 1982 

dollars, representing 4% of the gross national product [30].  Approximately 80% of these 

costs were related to fatigue under cyclic loading.  The costs to the United States Air 

Force are equally staggering, in particular those related to high cycle fatigue (HCF).  

HCF is the crack growth phenomenon related to components subjected to low stresses 

relative to the material’s ultimate strength but very large numbers of cycles, either due to 

extremely long service life or very high frequency loads, or both.  HCF is a particular 

concern in gas turbine engine design due to the very high frequency aeromechanical 

vibratory loads.  Air Force statistics show that between 1982 and 1996, 56% of Class A 

(the most serious) engine-related failures were due to HCF [5].  HCF continues to be a 

major safety concern, leading to increased maintenance and inspections, affecting engine 
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reliability, availability, and maintainability.  In fiscal year 1994, approximately 850,000 

maintenance man-hours were expended as part of HCF risk management inspections, 

with annual cost of HCF to the Air Force and Navy estimated to be over $400 million [5].  

Reducing the impact of HCF-related failures and maintenance is currently a major goal of 

Department of Defense research. 

To help eliminate HCF as a major cause of engine-related failures, the U.S. 

Government officially began the National HCF Science and Technology (S&T) Program 

in December 1994 [5].  This program is directed by an Air Force-led steering group with 

representatives from the Air Force, Navy, Army, and National Aeronautics and Space 

Administration (NASA) along with an adjunct advisory panel made up of industry 

members.  In addition, a parallel committee was established in 2000 to share data and 

technology development with the United Kingdom.  Since its inception, the HCF S&T 

Program has made considerable strides in the understanding of HCF and methods to 

mitigate its negative impacts.  Significant cost savings are already being realized by the 

Air Force due to these efforts.  However, HCF is still a very difficult design challenge.  

Currently, one of the major efforts of the program is to utilize the technology 

advancements and research discoveries to update the HCF-related portions of the Engine 

Structural Integrity Program (ENSIP) documentation.  The ENSIP guidance, found in 

MIL-HDBK-1783B, provides engine manufacturers with recommended design 

considerations to ensure a structurally-reliable final product.  The current guidance 

recommends a design life goal of 109 cycles for engine components subjected to high-

frequency vibratory loads, as the following excerpt shows: 

“All engine parts should have a minimum HCF life of 109 cycles.  This 
number is based on the observation that an endurance limit does not exist 
for most materials.  If it can be shown through analysis or test that a given 
part will not experience 109 cycles during its design life, a number lower 
than 109 may be used...  It should be shown that the total time of exposure 
to any frequency and amplitude is less than 109 cycles or that the 
amplitude is less than the material allowable at 109 cycles.  An alternate 
approach is to use a life of 109 cycles based on data obtained at shorter 
lives, but not less than 107 cycles, and a demonstrated valid method to 
extrapolate to 109 cycles to establish an endurance limit.  Cycles which 
have vibratory stress amplitudes less than the endurance limit at 109 cycles 
can be considered to have no detrimental effect on pristine material and 
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can be ignored in damage accumulation evaluation, provided no other 
damage is present.”  (MIL-HDBK-1783B, 15 Feb 2002 [3]) 

Although the ENSIP guidance provides the 109-cycle design goal, there are no 

proposed means given within the documentation to validate a material’s ability to 

withstand these cycles with reasonable statistical confidence.  In addition, the mention of 

alternative approaches for incorporating tests at lower numbers of cycles is not followed 

up with any recommendations for such an approach.  In short, the guidance currently 

does not address how an engine manufacturer can adequately test to ensure compliance 

with material HCF design goals.  This void is not unintentional but is due to the fact that 

there has been a very limited amount of research related to the development of efficient 

yet reliable test methods to characterize fatigue strength in the ultra high cycle regime 

(~109 cycles) where test data points are extremely limited.  Development of a means to 

predict the life of a material subjected to high-frequency, small-amplitude loads is one of 

the objectives of the Materials Damage Tolerance Action Team as part of the HCF S&T 

Program, as indicated by product 2.6 on the schedule shown in Figure 1.  Validating a 

methodology to test fatigue strength at 109 cycles is part of this team’s overall effort.  

Approaches to characterizing the fatigue strength of a material must statistically 

account for the scatter in fatigue data.  This scatter is generally due to a variety of factors, 

some more controllable than others.  Some of the relatively controllable factors include 

inconsistencies in surface finish, deviations in specimen alignment, differences in applied 

loading conditions, and inconsistent residual stresses.  These sources of scatter are 

generally mitigated through proper experimental procedures.  However, scatter in fatigue 

data is still observed due to the random nature of the microstructure of each specimen, 

which produces slightly different conditions for crack initiation and growth within each 

specimen.  In the high cycle regime, fatigue life is dominated by the crack initiation 

phase, which is heavily dependent on microstructural phenomenon related to localized 

conditions.  Thus, the scatter in fatigue data tends to be magnified in the high cycle 

regime.  This behavior has been confirmed by numerous researchers through the years 

[78; 80].  Based on these and similar findings, any experiment designed to test fatigue 

strength in the high cycle regime must account for significant scatter in results. 
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Figure 1.  Materials Damage Tolerance Action Team’s research schedule (from 
National HCF S&T Program’s 2002 Annual Report [5]). 

Currently, a variety of test approaches have been used to estimate the fatigue 

strength of a material.  In general, these methods allow a means to deal with the scatter in 

fatigue data and provide an estimate for the median fatigue strength at a specified number 

of cycles.  For simplicity, one can sort these methods into four broad categories:  (1) 

conventional S-N tests, (2) quantal response tests, (3) accelerated stress tests, and (4) 

more advanced statistical methods. 

The conventional S-N test approach prescribes a series of tests to determine the 

stress-life curve.  Ever since the work of Wöhler, development of these curves for various 

materials and loading conditions has been the “backbone” of fatigue data generation.  In a 

conventional S-N test approach, a range in fatigue life for each load level can be 

estimated to produce a family of S-N curves at various levels of probability of failure.  
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These curves then allow an estimate of fatigue strength at any specified number of cycles.  

This method has some major drawbacks, however.  For one, runouts (specimens which 

do not fail before the test is concluded) cannot be handled using standard analysis 

methods since it is unknown when the specimen actually would have failed.  For high 

cycle testing there is often a large number of specimens which do not fail in the allotted 

test time.  This is especially true in the gigacycle regime; i.e., on the order of 109 cycles, 

also called the ultra high cycle fatigue (UHCF) regime.  It is simply not practical to test 

every specimen to failure in this long-life regime where fatigue life has a large scatter and 

test times would be extraordinarily long.  In addition to being unable to handle runout test 

data, the conventional S-N approach has another major drawback.  Although it allows an 

estimate of the scatter in fatigue life, it is more difficult using conventional S-N analysis 

to estimate the scatter in fatigue strength for a given number of cycles.  For these reasons, 

a conventional S-N approach becomes impractical for the determination of fatigue 

strength and its dispersion in the high cycle regime.  However, Spindel and Haibach 

looked at a modified S-N approach to better represent the true shape of the S-N curve as 

well as provide a better estimate of fatigue limit [81].  For the most part, their analysis 

was rather incomplete in describing a means to better estimate the fatigue limit using S-N 

data, but it is significant in that it introduced the concept of maximum likelihood 

estimation as a means to handle runout data from S-N tests. 

As opposed to the conventional S-N approach, quantal response tests are by their 

nature a “pass/fail” test and are thus better suited to handle runout test data.  In a quantal 

response test, specimens are tested at a certain load level and they either survive the 

specified number of cycles or they fail.  Thus, quantal response analysis methods 

generally do not need to consider the exact number of cycles to failure.  Analysis allows 

an estimate of median and standard deviation of the fatigue strength at the specified 

number of cycles based on the proportion of failed specimens at each load level.  Four 

methods of quantal response testing have been applied to fatigue strength testing:  (1) the 

probit method, (2) the staircase (or “up-and-down”) test, (3) the two-point method, and 

(4) the arcsin√P method.  Quantal response methods show some significant promise in 

allowing a relatively accurate estimate of fatigue strength (and to a lesser degree, fatigue 

strength dispersion) in an efficient manner so long as the test parameters are chosen 
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wisely.  Unfortunately, there has been limited research since the widespread availability 

of computer-based numerical simulation to investigate these tests to determine the 

optimum set of test parameters for a given fatigue strength distribution. 

Another approach to fatigue limit testing is the use of accelerated stress tests.  

This term essentially includes tests in which the stress level is increased during the test of 

a specimen in order to ensure the specimen fails in a reasonable number of cycles.  This 

approach differs from the tests discussed so far which utilize a constant stress level for 

each individual specimen.  Two such accelerated stress methods are the Prot method and 

the step-loading method [61; 72].  Although these methods show some promise in 

providing an estimate for fatigue strength, they are not developed enough at this time to 

provide estimates for the dispersion in fatigue strength.   

The final group of fatigue limit test approaches are lumped together under the 

banner of advanced statistical methods.  Three such approaches which show some initial 

promise include random fatigue limit (RFL) modeling, Bayesian methods, and 

bootstrapping methods.  RFL modeling explicitly assumes that each specimen has its own 

fatigue strength at a given number of cycles based on its unique microstructure.  Pascual 

and Meeker proposed a method incorporating maximum likelihood estimation to produce 

probabilistic S-N curves which account for the uncertainty in both fatigue life as well as 

fatigue strength [66].  Their work takes a bold step in better modeling observable 

characteristics of S-N data using a manageable mathematical formulation.  Specifically, 

the Pascual-Meeker method accounts for the increase in standard deviation of fatigue life 

at lower stress levels as well as the curvature and flattening of the S-N curve in the HCF 

regime.  As an alternative approach, Bayesian statistical methods are an established 

means of estimation which utilize prior information, whether qualitative or quantitative in 

nature, to augment and enhance real test data to provide a better estimate of population 

parameters [38].  In a Bayesian approach applied to fatigue strength testing, additional 

sources of information such as fatigue strength distribution parameters at a lesser number 

of cycles may be used to augment the test data in the gigacycle regime in order to 

improve the strength distribution parameter estimates.  However, Bayesian methods can 

be quite difficult to implement in practice as the weighting of prior data tends to be a 

subjective input that can greatly skew the final results.  In addition to Bayesian methods, 



 

 8 

bootstrap methods may also provide some opportunities to more efficiently model fatigue 

limit behavior [12].  The bootstrap method is a data-based simulation which utilizes 

multiple random draws from real test data to make statistical inferences about the 

underlying population [31].  The main drawback to bootstrapping is the reuse of existing 

data which may skew the results depending on the presence of outliers as well as any 

other misrepresentation of the sample with respect to the true population.  It is also a 

somewhat difficult method to explain and rationalize to decision makers.   

These methods of fatigue strength evaluation allow a means to address the void in 

the ENSIP guidance with respect to determination of a material’s fatigue strength at 109 

cycles.  The primary goal of the research described in this dissertation is to address this 

lack of guidance by investigating these methods and refining a test methodology to 

efficiently investigate the fatigue behavior of a material in the gigacycle regime.  The 

staircase test and the RFL model were selected as two of the most promising analysis 

approaches.  The staircase test offers a relatively simple test protocol and post-test 

analysis.  However, it is very sensitive to test parameter settings, and is prone to a wide 

scatter for estimates of fatigue strength standard deviation.  Recent work by a number of 

researchers, among them Braam and van der Zwaag [20], Svensson et al [84], and Rabb 

[73], have attempted to modify the staircase analysis method based on results of staircase 

simulation.  The merits and limitations of these approaches are discussed herein.  An 

exhaustive simulation study was undertaken in this study to better quantify the inherent 

bias and scatter within the staircase method and offer means of dealing with this bias.   

The next phase of this research effort focuses on the experimental validation of 

the proposed test strategy.  The objective of this phase is to use the recommended 

staircase test modifications in a real laboratory environment to assess both the feasibility 

of conducting the test protocol and the accuracy of the analysis results using a material 

with relatively well-known fatigue strength properties.  The material chosen for this 

investigation is a dual-phase titanium alloy, or α-β Ti-6Al-4V.  Ti-6Al-4V is a commonly 

used aerospace metal found in turbine blades and other engine components requiring high 

strength-to-weight ratio, high temperature performance, and corrosion resistance.  A 

significant number of Ti-6Al-4V data points were tested in earlier phases of the National 
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HCF S&T Program, making it an ideal choice for assessing the results using the 

recommended test strategy. 

The next phase of the research focuses on experimental investigation.  With the 

tests conducted for the validation phase, a significant opportunity exists to conduct some 

additional research on the gigacycle fatigue behavior of another Ti-6Al-4V variant.  

Gigacycle fatigue behavior has in the last decade become a very hot topic in the HCF 

community with the greater availability of data in the gigacycle regime made possible by 

new ultrasonic test equipment.  These test machines, such as the 20-kHz machine 

operated by the Air Force Research Laboratory’s Materials Directorate (AFRL/ML), 

reduce the time required to conduct a test of 109 cycles down to hours rather than days, 

weeks, or even months using lower frequency machines.  Some very interesting findings 

have been made by various researchers around the world in the last decade or so which 

directly challenge some long-held beliefs regarding high cycle fatigue behavior.  As 

Bathias et al describe in their editorial on gigacycle fatigue, 

“Although high-cycle fatigue is one of the most common reasons for 
failure of components and structures, most experimental investigations are 
limited to testing periods of between 107 and 108 cycles, though failures 
may indeed occur at much higher numbers of cycles, especially in 
nonferrous materials.  However, during the last few years several 
unexpected failures have been recorded, even in ferrous materials which 
were assumed to have a fatigue limit in the range of 106-107 cycles… 
Consequently, extensive research is now required to develop new 
experimental methods and lifetime prediction theories.  Unfortunately 
very few experimental data exist despite many requests from failure 
analysts…” (Bathias, Miller, and Stanzl-Tschegg, 1999 [18]) 

As this excerpt reveals, recent research raises the question of whether a fatigue 

limit even exists in materials previously thought to exhibit one, such as ferrous metals 

and most titanium alloys.  Several researchers have discovered a bi-modal shape to the 

stress-life curve which indicates a decrease in fatigue strength in and beyond the 

gigacycle regime [1; 13; 15; 51; 54; 55; 64; 65; 77; 86].  These investigations indicate 

that there is a second fatigue failure mechanism due to subsurface crack initiation at these 

very long fatigue lives which produces the drop in fatigue strength.  Prior testing in the 

gigacycle regime by AFRL/ML using Ti-6Al-4V with an α-β microstructure did not 
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show this behavior which has been found by other researchers [4].  However, the use of 

an alloy with alternative microstructure provides an opportunity to investigate the 

presence of this second failure mechanism in a material with little data in the gigacycle 

regime.  The beta annealed Ti-6Al-4V alloy is such a material.  An investigation of the 

very high cycle fatigue behavior of beta annealed Ti-6Al-4V is presented.  In order to 

investigate this material, an initial study of the RFL model was made to determine a 

recommended test strategy for fatigue life characterization over a range of cycles.   

In summary, the research outlined in this dissertation is captured by the problem 

statement below: 

Investigate and recommend a test methodology to efficiently evaluate the 
ultra high cycle fatigue behavior of materials, specifically to estimate the 
median and variance of the fatigue strength in the gigacycle regime based 
on a limited amount of failure and runout test data.  This methodology 
may serve to support design guidance provided by the Air Force to engine 
manufacturers.  This methodology will be used in conjunction with data 
from gigacycle fatigue tests of dual-phase Ti-6Al-4V to validate its 
applicability.  Testing will be accomplished using AFRL/MLLM’s 20-kHz 
ultrasonic fatigue testing apparatus.  Additional investigation into the 
nature of fatigue failures in the gigacycle regime will be accomplished 
through testing of a beta annealed Ti-6Al-4V alloy.  Namely, the crack 
initiation mechanism (surface versus subsurface) will be investigated.  Use 
of the RFL model will be investigated to characterize fatigue life behavior.  
Alternative analysis methods will be developed as required. 

The rest of this dissertation presents the research to address this problem.  

Chapter II discusses the preliminary background necessary for understanding the 

probabilistic approach to fatigue strength testing and gigacycle research.  Chapter III 

presents the staircase simulation study, which results in a recommended test strategy for 

fatigue strength testing with limited samples.  Chapter IV presents an experimental 

application of the test strategy outlined in Chapter III using the α-β Ti-6Al-4V alloy.  

Chapter V presents an investigation of the random fatigue limit (RFL) model for use in 

small-sample testing to characterize fatigue life behavior in the very high cycle regime.  

Chapter VI presents the experiments using beta annealed Ti-6Al-4V to characterize its 

HCF behavior.  The RFL model is used to analyze the experimental data.  An alternative 

analysis approach is developed using maximum likelihood analysis to better characterize 
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the Ti-6Al-4V data.  This alternative approach is applied to both the α-β Ti-6Al-4V data 

and the beta annealed variant, allowing a characterization of stress-life behavior with a 

small-sample test.  Chapter VII presents a summary of conclusions and areas for further 

research.  Detailed results are outlined in the appendices. 
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II. PRELIMINARIES 

In this chapter, the preliminary background pertinent to the study of high cycle fatigue 

and fatigue strength testing will be presented.  The first part of this chapter presents a 

brief overview of the nature of fatigue and common means of relating fatigue testing 

data.  The second part focuses on the statistical analysis of fatigue experiments, with an 

introduction to probability and statistics and an overview of the most applicable methods 

used to determine the fatigue strength of a material.  The third part of this chapter 

summarizes previous studies of high cycle and ultra high cycle fatigue (HCF/UHCF) 

which are relevant to this research effort.  Finally, the chapter concludes with a short 

overview of materials processing for Ti-6Al-4V. 

An Introduction to Fatigue 

It is quite common for components of engineering structures to be subjected to 

repeated loads, also called cyclic loads.  These loads induce cyclic stresses within the 

material which result in microscopic physical damage, even when the gross stresses are 

well below the material’s ultimate strength.  This microscopic damage accumulates over 

time as the cyclic stressing continues until eventually a macroscopic crack or other 

damage becomes evident.  This process of damage accumulation due to cyclic loading is 

known as fatigue.   

Fatigue as a branch of study encompasses a range of scientific and engineering 

disciplines and offers a variety of interesting phenomena to explore as basic research or 

for use in engineering applications.  It has been a source of study for over 170 years, with 

an ever-growing body of knowledge which has been analyzed primarily using three major 

approaches [30].  The traditional approach bases analysis on the mean stresses and 

associated alternating stresses in the region of the component under investigation.  The 

effects of stress raisers such as grooves, holes, or notches are included in this analysis.  

This approach, known as the stress-based approach, is considered the traditional method, 

and was developed to near maturity by 1955.  The strain-based approach, on the other 

hand, involves a more detailed analysis of the deformation near stress raisers.  Analysis 

centers on the localized yielding in these regions.  The last approach is the adaptation of 
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fracture mechanics to fatigue crack growth.  Typically, the stress-based approach is used 

in the analysis of fatigue strength. 

Definition of Key Terms 

Many practical applications involve the cycling of a component between a 

minimum stress level and a maximum stress level.  Using the stress-based approach, this 

constant amplitude stressing can be described using some common definitions.  Stress 

range, Δσ, is defined as the difference between the maximum stress (σmax) and minimum 

stress (σmin).  The mean stress, σm, is defined as the average of the maximum and 

minimum stresses.  The stress amplitude, σa, is taken as half the stress range.  

Mathematically, these definitions are expressed as [30]: 
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The ratio of minimum stress to maximum stress is a very important value used 

when describing fatigue test results.  This ratio, known as the stress ratio, is denoted by R 

as shown below: 
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σ
σ
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Some useful relationships based on these definitions include: 

 )1(2 max Ra −==Δ σσσ  

 )1(
2
max Rm +=

σ
σ  (3) 

Notice that when the minimum stress is the negative of the maximum stress, the 

mean stress is obviously zero, and the associated stress ratio R equals -1.  This condition 

is known as fully-reversed (or completely-reversed) loading.  The definitions in 

Equations 1 through 3 can also be applied to other variables of interest such as strain (ε), 

load (P), bending moment (M), and nominal stress (S). 

Stress-Life (S-N) Curves 

A stress-life curve relates the nominal stress level (S) to the number of cycles until 

a specimen fails (N, or Nf)  – i.e., catastrophic failure or a crack develops and reaches 
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some critical length.  The nominal stress is usually expressed in terms of stress amplitude 

although other fatigue parameters are often used as well.  The curve is usually drawn with 

linear S and log N scales as shown in Figure 2, although log S and log N curves are also 

frequently encountered.  Ever since the work of Wöhler, development of these curves for 

various materials and loading conditions has been the “backbone” of fatigue data 

generation.  As Yen describes, the S-N curve can be interpreted as the progressive 

structural deterioration and gradual breaking of interatomic bonds under repeated stresses 

and may be analyzed as a statistical process [47].  The same principles and mathematical 

approach can be applied to the development of strain-life (ε-N) curves as well. 

 

 

Figure 2.  Typical S-N curve (from Dowling [30]). 

When S-N data are found to be approximately linear on a log-linear plot, the curve 

may be modeled using the following expression over the linear region [30]: 

 fa NDC log+=σ  (4) 

where C and D are fitting constants.  For linear regions on a log-log plot, the following 

expression is often used (also called Basquin’s equation): 

 B
fa AN=σ  (5) 
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where A and B are fitting constants.  This equation is more commonly expressed in the 

following form [30]: 

 b
ffa N )2('σσ =  (6) 

In some materials, there appears to be a noticeable stress level such that fatigue 

failure does not occur at stresses below this level.  This stress level is known as the 

fatigue limit.  The term endurance limit as used by Nelson [58] specifies the stress level 

at which the fatigue life becomes a prescribed long but finite life.  The term fatigue 

strength specifies the stress amplitude corresponding to a particular fatigue life of 

interest, as defined by Collins [23] and Dieter [25].  Thus, the fatigue strength at 109 

cycles is merely the stress level corresponding to failure at 109 cycles on the S-N diagram.  

For materials which do not exhibit a clear fatigue limit, fatigue strength is used to specify 

the stress level corresponding to a specific long life.  In practice, the terms fatigue limit 

and fatigue strength at a very high number of cycles (such as 109) are often used 

interchangeably.  In this work, the term fatigue strength will be used when specifying the 

stress corresponding to a specific number of cycles.  Figure 3 illustrates fatigue limit and 

fatigue strength on typical S-N curves.   

Figure 3.  Fatigue limit and fatigue strength on typical S-N curves. 
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The S-N curve is often conceptually divided into two regions:  the low cycle 

fatigue (LCF) and the high cycle fatigue (HCF) regions.  LCF corresponds to the region 

where failures occur at relatively short lives, typically less than 104 cycles.  The HCF 

region corresponds to the part of the curve associated with higher fatigue lives.  Note that 

this division between the LCF and HCF regions is somewhat arbitrary and varies by 

material.  In the HCF region, fatigue life is dominated by the crack initiation phase, 

which transitions to crack propagation once the crack grows to some macroscopic length.  

LCF, on the other hand, is more dominated by the crack propagation phase, with a 

macroscopic crack, severe stress concentration, or other defect already initially present or 

quickly developed due to high stresses.  The term very high cycle fatigue is occasionally 

used as well, typically referring to lives on the order of 106-109 cycles, although again 

this term is somewhat arbitrary.  Ultra high cycle fatigue (UHCF) typically refers to 

fatigue at greater than 108 cycles.  Gigacycle fatigue is a term often used when fatigue 

lives are on the order of 109 cycles. 

Fatigue Crack Growth 

As a property of crystalline solids (such as aerospace metals), the initiation of 

fatigue cracks is essentially a problem of dislocation physics, a result of the motion and 

interaction of dislocations acted upon by cyclic stresses.  These dislocations represent 

discontinuities in the crystal lattice.  Yen describes the mechanism of fatigue crack 

formation in a simplified three-stage manner [47].   

In the first stage, the dislocations originally present in the crystal grains multiply, 

thus increasing the dislocation density.  An irregular cell wall or subgrain begins to form.  

Fine slip bands that tend to appear initially along favorably oriented grains become more 

numerous as the number of stress cycles increases.  Slip bands are regions of intense 

deformation due to the shear motion between crystal planes.  Some of these slip bands 

remain localized, some broaden, and the very pronounced become persistent slip bands.  

The crystal grains begin to become distorted and strain-hardened.  Then, dislocation 

motion in one direction may become fully reversed in synch with the stress.  New 

dislocations and their movements are generated only in some local slip zones where 

microstructural features are not consistent in both directions of motion.   
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In the second stage, thin ribbon-like extrusions of metal are emitted from the free 

surface and internal fissures called intrusions develop as the persistent slip bands are 

matured.  These fissures are the initiations of a crack, and tend to occur along the slip 

planes associated with maximum resolved shear.   

In the final stage, the newly formed crack propagates in a zigzag manner along 

slip planes and cleavage planes from grain to grain, maintaining a general direction 

perpendicular to the maximum tensile stress.  Many factors affect the rate of crack 

propagation at this point, but as much as 99% of the fatigue life may be spent in the 

development of these internal fissures and their coalescence into macroscopic cracks. 

Mean Stress Effects 

Consideration of the effect of mean stress ratio on fatigue life is a primary 

concern in many fatigue analyses.  Presentation of this data is accomplished in several 

different manners.  The most obvious manner is to develop a family of S-N curves for 

tests run at various stress ratios.  These curves are often drawn on the same diagram with 

different R ratios identified for each curve, as shown in Figure 4. 
 

 
Figure 4.  Stress-life curves for various stress ratios (from Dowling [30]). 

An alternative means of expressing data at different mean stresses is to use a 

constant-life diagram.  In this type of diagram, data from the various S-N curves at 
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different stress ratios is replotted with each combination of mean stress and stress 

amplitude corresponding to a specified value of the number of cycles to failure.  Various 

curves can then be drawn for different values of N, as illustrated by Figure 5.  The stress 

amplitude at zero mean stress (denoted by σar) is represented by the intercept (σm = 0) of 

the constant-life curve.  A normalized constant life curve can be drawn using values of 

the ratio σa/σar plotted against σm for a particular fatigue life.  This plot, known as a 

normalized amplitude-mean diagram, is shown in Figure 6.  Various relations have been 

developed to fit the normalized amplitude-mean data, such as the linear fit (Goodman 

curve) shown on Figure 6, to more elaborate means such as the Gerber parabola [30]. 

 

 
Figure 5.  Constant life diagram for 7075-T6 aluminum (from Dowling [30]). 
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Figure 6.  Normalized amplitude-mean diagram for 7075-T6 aluminum (from 

Dowling [30]). 

Scatter in Fatigue Data 

In any planned fatigue experiment, there is always some amount of scatter in the 

data, as depicted in Figure 4.  This scatter is generally the cumulative effect of a variety 

of random factors.  Some of the relatively controllable factors include inconsistencies in 

surface finish, deviations in specimen alignment, differences in applied loading 

conditions, and inconsistent residual stresses.  These sources of scatter are generally 

mitigated through careful specimen preparation and handling, calibration of laboratory 

equipment, replicable experimental procedures, and use of identical specimens made 

from similar material from the same supplier.  But even if these steps are taken, scatter in 

fatigue data is still observed due to slight differences in the microstructure of each 

specimen, which produces different conditions for crack initiation and propagation within 

each specimen.   
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Since crack initiation is a microstructural phenomenon dependent on localized 

conditions surrounding grain boundaries, inclusions, and other defects with a somewhat 

random distribution within the crystalline structure, one might expect the scatter in 

fatigue data to be magnified in the high cycle regime where fatigue life is dominated by 

the crack initiation phase.  In fact, this phenomenon has been confirmed by numerous 

researchers through the years.  In one such study, Sinclair and Dolan performed a lengthy 

experiment reported in 1953 using 174 identical highly-polished unnotched 7075-T6 

aluminum alloy specimens tested to failure at six different stress levels [78].  Their 

results showed that greater scatter in fatigue life occurred at lower stress levels 

(corresponding to longer fatigue lives).  This effect was also observed by Bastenaire 

using a variety of grades of steel [14].  Moreover, Sinclair and Dolan showed that fatigue 

life was distributed approximately lognormal at each stress level tested.  Based on these 

and similar findings, any experiment designed to test fatigue strength in the high cycle 

regime must account for significant scatter in results. 

Statistical Analysis of Fatigue Experiments 

Before investigating various statistical methods used to analyze fatigue strength 

data, it is important to review some of the basics of probability and statistics to lay the 

groundwork for discussions to follow. 

Introduction to Probability and Statistics 

Although the subject of statistics is often perceived as murky and complex by 

engineers, the essential elements of probability and statistics relevant to fatigue testing 

are fairly straightforward.  The goal of statistics is summarized below: 

“The objective of statistics is to make an inference about a population 
based on information contained in a sample and to provide an associated 
measure of goodness for the inference.”  (Wackerly et al [89]) 

This objective clearly cuts to the heart of the matter at hand as the primary objective of 

this research is to develop a means to estimate the fatigue limit and its dispersion (the 

inference) based on a limited amount of fatigue tests (the sample) with reasonable 

confidence (the measure of goodness). 
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As an introduction to probability theory, consider the roll of a die, with possible 

outcomes of 1, 2, 3, 4, 5, or 6.  These outcomes together form the sample space – i.e., the 

range of all possible outcomes.  Each roll of the die is a random event.  The probability of 

any outcome assuming a fair die is obviously 1/6.  A random variable is defined as a real-

valued function for which the domain is a sample space [89].  In the die example, one 

could define a random variable Z as a function equal to 1 if the roll is odd and 0 if the roll 

is even.  In this case, Z would have an expected value of 0.5 since half the possible 

outcomes would be odd and half would be even.  These concepts lead to the three basic 

axioms of probability theory, which define a probability function as follows [80]: 

1. The probability of any random event is between 0 and 1; i.e., 0 ≤ P(A) ≤ 1, 

where A is a random event. 

2. The sum of all probabilities of random events within a sample space is 1; i.e., 

∑P(A) = 1. 

3. For a countable collection of mutually disjoint random events, the probability 

of any of these events occurring equals the sum of the probability for each 

individual event’s occurrence; i.e., P{∪Aj} = ΣP(Aj). 

There are two basic classes of random variables:  discrete and continuous.  

Discrete random variables take on only a finite or countably infinite number of distinct 

values whereas continuous random variables take on a non-countable number of values.  

For example, the number of cycles to failure for a given test would be a discrete random 

variable as it must be an integer.  Conversely, the stress level at which a specified portion 

of specimens fails to reach a given number of cycles would be a continuous random 

variable as it could be any positive real number. 

The probabilistic behavior of a random variable is characterized by a cumulative 

distribution function (cdf) which is defined as 

 { }xXPxFX ≤= )()( γ  (7) 

where X(γ) is a random variable, γ is an event in the sample space, and x is a real number 

[80].  By this definition, the cdf is a nonnegative, nondecreasing function over the range 

[0,1].  If one denotes the probability of any discrete random event as pi, then 



 

 22 

 
.1

,)(
,

=∑

∑=
≤

i
i

xxi
iX

p

pxF
i  (8) 

For continuous random variables, a probability density function (pdf) is defined such that 
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Clearly, based on these definitions the following relations exist: 
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Two random events are said to be independent if the occurrence of one event has 

no effect on the occurrence of another event.  One must be careful during experimental 

design to ensure outcomes are independent of each other with respect to the random 

variables of interest.  An example of dependent events in terms of fatigue testing 

concerns the reuse of specimens tested at other stress levels or shorter lives.  Say that one 

is interested in determining the fatigue strength at both 107 and 108 cycles.  If a series of 

pass/fail tests at 107 cycles were run and the surviving specimens were reused for the 108 

cycle tests, a dependence has been introduced since the outcomes of the first test series 

affect the second test series.  It would be impossible to have a specimen fail before 107 

cycles in our second series of tests since all the specimens have already survived that 

duration.  Note, however, that the probability of the specimens failing before 107 cycles 

may be so low for the second series of tests that one may be justified in ignoring this 

dependence (assuming there are no other effects due to stressing the specimens). 

With this background, the expected value (i.e., mean value) of a random variable 

is defined in the following manner: 



 

 23 

 ∫
⎪
⎩

⎪
⎨

⎧

∫

∑
===

∞

∞−
∞

∞-
X

i
ii

X dxxxf

px
xxdFXE

 continuous   )(

discrete           
)()(μ  (11) 

which is simply an average value taken over all possible outcomes weighted by the 

probability of each outcome [80].  Another commonly used measure of central tendency 

is the median, which is just the value for which 50% of the random variable values lie 

above and 50% lie below; i.e., the value of x for which FX(x) equals 0.5.   

 The dispersion, or spread of a random variable about its mean, is generally 

measured using the variance which is defined as 
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and σX (the positive square root of the variance) is the standard deviation [80].   

Several probability distributions have proven to be of significant value in both 

theory and application over the years.  These distributions are merely analytical 

expressions for FX(x) which are useful because of their ease in deriving analytical 

solutions to many problems and their applicability to represent a large number of random 

variables with reasonable accuracy.  With respect to fatigue, some of the more relevant 

distributions include the Poisson, Gaussian (normal), lognormal, gamma, exponential, 

chi-square, inverse-Gaussian, and extreme value distributions [80].  A detailed 

description of each of the distributions commonly used in reliability analysis are 

presented by Elsayed [32], with a more complete overview given by Rice [75].  

The goal of a statistical analysis of a fatigue experiment is generally to estimate 

some material property or behavior – fatigue limit, S-N curve, etc. – based on a sample of 

test data.  Generally, the property or behavior is modeled as a random variable using an 

appropriate probability distribution which fits the data reasonably well.  Using this 

distribution or parameters of this distribution, one can test most any hypothesis regarding 

the underlying distribution related to the property or behavior of interest.  Thus, it is 

important to be able to determine the key parameters of the population’s underlying 

distribution – such as the mean and standard deviation of a fatigue limit at 109 cycles.  



 

 24 

Estimators are rules (generally expressed as formulae) that define how to estimate values 

of a population based on sampled data. 

It is important to differentiate between the population’s underlying distribution 

and the sampling distribution.  For example, the fatigue life at a certain stress level may 

be plotted using a histogram as shown in Figure 7.  This plot shows that the fatigue life in 

Sinclair and Dolan’s data set is distributed approximately lognormal.  The sampling 

distribution, on the other hand, refers to the probability distribution associated with an 

estimator.  The standard deviation of the sampling distribution for an estimator is 

generally known as the standard error of the estimator.  If we defined a sampling statistic 

ŷ to be the mean fatigue life, then the sampling distribution would be the distribution 

associated with the mean fatigue life, not the distribution associated with individual 

fatigue life.  For large samples, sampling distributions based on mean values tend to 

become normal according to the central limit theorem [89].  

 

Figure 7.  Histogram showing lognormal fatigue life based on Sinclair and Dolan’s 
data (from Sobczyk and Spencer [80]).  

Common, unbiased estimators valid for any underlying distribution are tabulated 

in most statistics texts.  The most important of these estimators related to fatigue research 

are estimates for mean and proportion (e.g., a ratio such as fraction of survivals).  As one 

would expect, the point estimates for mean and proportion are calculated by simply 

evaluating the sample mean and sample proportion, respectively.  The standard error for 

mean and proportion are estimated using the following equations [89]: 
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where σ is the true population standard deviation, n is the sample size, p is the true 

probability of survival, and q is the true probability of failure (i.e., 1-p).  Since the 

standard error estimates are based on true population parameters which are generally 

unknown, some initial estimates of the true population are needed in order to estimate 

standard error. 

If a test series can provide a reasonably accurate estimate of the fatigue limit 

distribution parameters associated with a given number of cycles (such as 109), then a 

designer can easily specify the maximum loads that a component may be subjected to for 

an associated level of risk.  For example, say a test series shows that the fatigue limit at 

109 cycles can be estimated using a normal distribution with mean 400 MPa and standard 

deviation 5 MPa, then simple statistics may be used to determine the maximum allowable 

load for a given risk level, say 1% risk of failure before 109 cycles.  To determine this 

maximum load, a standard normal probability table (such as Table 4 of Appendix 3 in 

Wackerly et al [89]) is used to find the Z value associated with the risk level 0.01.  The Z 

value represents the standard normal variate (mean 0 and standard deviation 1) associated 

with a probability level α such that the probability of any value greater than Z is equal to 

α.  In this case, the Z value associated with 0.01 would be -2.3267.  We can then 

transform this standard normal variate to a specific normal distribution using the 

transformation law: 

 
σ
μ−

=
YZ  (14) 

where Y is a random normal variable with mean μ and standard deviation σ.  Thus, for 

this example, 
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Therefore, the maximum allowable load associated with 1% risk of failure before 109 

cycles would be 388.4 MPa for this fatigue strength distribution.  If the fatigue loads on 
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this component are less than 388.4 MPa, then it would meet a design goal of 109-cycle 

fatigue life with 1% risk of failure.  This example represents the general idea in using a 

fatigue strength distribution to ensure compliance with ENSIP guidance.  The assumption 

is that fatigue strength distribution could be reasonably estimated using fatigue test data.   

Probabilistic Approach to Fatigue Strength Testing 

Before discussing the methods to determine the parameters of a fatigue strength 

distribution, it is important to provide the conceptual model and terminology common to 

most all statistical analyses of fatigue data.  In general, there are three fundamental 

variables applicable to fatigue analysis [46]: 

1. S – the load level, generally a stress or strain index such as stress amplitude or 

Smith-Watson-Topper parameter; this parameter is generally the independent 

variable. 

2. N – the number of cycles tested, usually to failure; this parameter is generally 

the dependent variable. 

3. P – the proportion of specimens which fail before a specified number of 

cycles have been completed; this parameter is sometimes used as the 

dependent variable. 

These three parameters taken together can be used to conceptually construct a P-

S-N surface (sometimes referred to as the S-N-P surface in the literature) [46].  The P-S-N 

surface is visualized by adding a third axis to the S-N curve.  This third axis represents 

the proportion of specimens which fail given a load level and number of cycles.  From 

this surface, one can trace an S-N curve by fixing a specific value of P.  Thus, one sees 

that any individual S-N curve has an implicit fixed value of P, and a family of S-N curves 

can be drawn together corresponding to different value of P as shown in Figure 8.  The 

typical S-N curve shown without an associated probability level represents the mean (or 

centerline) curve, meaning that 50% of the specimens fail above this curve and 50% 

below it, but one could just as easily draw a curve where say 30% of the specimens fail 

above and 70% below so long as multiple tests are run at each stress level.   
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Figure 8.  Conceptual S-N curves for specified P values (from Little and Jebe [46]). 

Likewise, one can trace a P-S curve from the P-S-N surface by fixing a value of N 

(Figure 9) or a P-N curve by fixing a value of S (Figure 10).  The P-S curve plays an 

important role in fatigue strength testing as it relates the proportion of failed specimens to 

the load level for a specified number of cycles. 

 
Figure 9.  P-S-N surface showing P-S trace (from Little and Jebe [46]). 



 

 28 

     
Figure 10.  P-S-N surface showing P-N trace (from Little and Jebe [46]). 

In the next several sections, a survey of current methods to statistically design and 

analyze experiments to determine a material’s fatigue strength will be presented.  These 

methods allow a means to deal with the stochastic nature of fatigue data and provide an 

estimate for the fatigue limit and its variance at a specified number of cycles.  In general, 

one can sort these methods into four broad categories:  (1) conventional S-N tests, (2) 

quantal response tests, (3) accelerated stress tests, and (4) more advanced statistical 

methods.  Table 1 shows the various methods that will be considered in this study. 

Table 1.  Various methods of experimental design for fatigue strength testing. 

Conventional S-N test method 
Quantal response tests 

• Probit method 
• Staircase method 
• Two-point method 
• Arcsin√P method 

Accelerated stress tests 
• Prot method 
• Step-loading method 

More advanced statistical methods 
• Random fatigue limit model 
• Bayesian method 
• Bootstrap method 
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Conventional S-N Testing 

The conventional S-N test approach requires a series of tests to be conducted at a 

range of stress levels, preferably with replication, in order to determine the stress-life 

curve.  Using this approach, a range in fatigue life for each load level can be estimated to 

produce a family of S-N curves at various probability levels.  Using multiple tests at the 

same set of load levels allows a means to describe this range in fatigue life using a 

probability distribution (such as the lognormal distribution used by Sinclair and Dolan).  

This distribution then allows an estimate for mean and standard deviation for fatigue life 

for any load level within the range of data.  The details of how to draw the S-N curve 

using a mathematical model are generally straightforward for simple models.  In 

particular, ASTM E739 describes the statistical analysis of linear (or linearized) S-N and 

ε-N fatigue data [8].  When all fatigue specimens fail, the most common method of 

determining the parameters of the S-N curve is to use ordinary least squares – the same 

method commonly used in curve fits of engineering data for the last 200 years since 

popularized by Gauss [8; 10].  This method has one serious drawback, however.  Namely, 

runouts cannot be handled since an actual failure time is not known.  Thus, a residual 

(i.e., the difference between the best-fit curve and the actual data point) cannot be 

calculated for runouts.  Therefore, conventional S-N analysis using ordinary least squares 

(or a similar approach) must exclude runout test data.  For high cycle testing – and 

especially testing in the gigacycle regime – there are often a large number of specimens 

which do not fail in the allotted test time since it is not feasible to test every specimen to 

failure in this long-life regime.  However, if all (or the vast majority) of tests are run to 

failure, the conventional S-N approach would allow a graphical representation of the 

fatigue strength associated with a specified number of cycles, as well as the fatigue limit, 

if one exists.   

In addition to being unable to handle runout test data, the conventional S-N 

approach has another limitation.  Although it allows an estimate of the scatter in fatigue 

life, it is more difficult using this approach to estimate the scatter in fatigue strength.  The 

reason for this difficulty should be rather obvious.  Because the number of cycles to 

failure is the dependent rather than independent variable, the researcher cannot set about 

to collect a certain number of failed specimens at an arbitrary value of N due to the 
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stochastic nature of fatigue life.  For these reasons, a conventional S-N approach in its 

most simplified form becomes impractical for the determination of fatigue strength and 

its dispersion in the high cycle regime.   

Spindel and Haibach looked at a more elaborate means of analyzing S-N data to 

better represent the true shape of the S-N curve as well as provide a better estimate of 

fatigue limit [81].  Their proposed approach allowed use of runouts by using maximum 

likelihood principles to deal with these data points in a statistically acceptable manner.  

Maximum likelihood estimation is a means to determine the best parameters to fit a data 

set using the principle that the best parameter estimates are those which would be most 

likely to produce the observed experimental data.  Their aim was to determine the 

parameters of the most likely “parent” population common to a number of data sets using 

similar specimens along with the associated confidence intervals for these parameters.  

Their first task was to investigate the shape of the S-N curve, looking at conventional 

linear fits (using linear S and log N or both log S and N) which include a horizontal 

portion beyond the fatigue limit, as well as S-shaped types of curves like those suggested 

by Weibull and others.  Based on an analysis of available data sets, they made the 

following conclusions concerning basic assumptions used in traditional S-N analysis:  (1) 

straight-line approximations gave a generally poorer fit relative to S-shaped curves for 

larger data sets, and (2) the assumption of a normal distribution with constant standard 

deviation for the logarithm of fatigue life at all stress levels is generally untrue.  Their 

analysis recommended a computer-based approach to determination of S-N curve shape 

but was rather incomplete in describing a means to better estimate the fatigue limit using 

S-N data.  However, their work is significant in that it incorporated the concept of 

maximum likelihood estimation as a means to handle runout data from S-N tests. 

Quantal Response Tests 

As opposed to the conventional S-N approach, quantal response tests do not 

consider the actual time to failure, but rather they are by their nature a “pass/fail” 

approach.  Thus, quantal response tests are designed to handle runout test data.  In a 

quantal response test, specimens are tested at a certain load level and they either survive 

the specified number of cycles or they fail.  Statistical analysis of test results allows an 

estimate of median and standard deviation of the fatigue strength at the specified number 
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of cycles based on the proportion of failed specimens at each load level.  Although used 

in fatigue strength testing and other applications, quantal response methods are 

historically associated with biological assay.  Biological assay is a set of techniques used 

in comparisons of alternative but similar biological stimuli – basically, the term means 

the measurement of the potency of any stimulus by observing the reaction that it produces 

in a living organism [35].  The objectives of biological assay and fatigue strength testing 

are quite similar.  In both cases, one wishes to determine the appropriate stimulus level 

(either “stress” or “dose”) for which an acceptable proportion of specimens survive.  Four 

methods of quantal response testing have been applied to fatigue strength testing:  (1) the 

probit method, (2) the staircase (or “up-and-down”) test, (3) the two-point method, and 

(4) the arcsin√P method.   

The probit method is a relatively well-known means of conducting fatigue 

strength testing [44].  In this approach, a group of specimens is tested at each of several 

uniformly-spaced test levels.  The data from these tests are then plotted on a P-S curve, 

also known as a fatigue strength response curve.  As previously mentioned, the P-S curve 

is simply a slice from a conceptual P-S-N surface with fixed N, as shown in Figure 11.  

According to Little, the probit method requires on the order of 30 or more specimens in 

order to provide an accurate estimate of median fatigue limit [44].  Little provides a chart 

to best allocate the specimens to each stress level based on the assumed true probability 

distribution for the probability of failure.  He also notes that one may test at any arbitrary 

stress level with arbitrary spacing and arbitrary number of specimens so long as the true 

probability of failure at that stress level is between roughly 0.3 and 0.7 and the 

probability distribution is symmetrical (such as for normal distributions).  Finney 

describes this same procedure from the biological assay perspective, using a dose-

response curve, which is identical in principle to the P-S curve [35].  The primary 

drawbacks to the probit method are the number of specimens required for an accurate 

estimate and the overall complexity of the analysis.  In addition, few data are available to 

recommend appropriate interval sizes, numbers of specimens for each stress level, and 

other key test parameters.  Nishijima offers a modified probit approach which utilizes a 

small-sample strategy on the order of ten specimens, although analysis still requires a 

rather cumbersome iterative approach [62]. 
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Figure 11.  P-S curve for typical quantal response data (from Little and Jebe [46]). 

The staircase (or up-and-down) test was first analyzed by Dixon and Mood in 

1948 [27].  In a staircase test, specimens are tested sequentially, with the first specimen 

tested at an initial stress level, typically the best guess for median fatigue limit estimated 

from either experience or preliminary S-N data.  The stress level for the next specimen is 

increased or decreased by a given interval depending on whether the first specimen 

survives or fails.  This process is continued until all the specimens allocated for the 

experiment have been used.  Typically, the step size between adjacent stress levels is held 

constant (approximately equal to the standard deviation of fatigue strength), in which 

case the statistics of Dixon and Mood may be applied directly to estimate mean and 

standard deviation of the fatigue strength [26].  Even though the true standard deviation 

in fatigue strength is one of the unknowns, Dixon notes that it is not too important if the 

interval is actually incorrect with respect to the true standard deviation by as much as 

50%.  However, Little notes that arbitrary spacing between stress levels may be used 
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when accompanied by a probit-type analysis [44].  In fact, tests conducted with non-

uniform spacing may be more statistically efficient than uniform spacing; however, the 

analysis becomes much more tedious and the equations and tables derived for uniformly-

spaced tests are no longer useful [42].  Figure 12 illustrates the staircase approach for a 

constant step size between stress levels. 
 

 

Figure 12.  Illustration of the staircase test method (from Little [46]). 

The primary advantage of the staircase method over the probit method is the 

improved efficiency.  Originally, Dixon and Mood indicated that the staircase method 

may require forty to fifty specimens for accurate parameter estimates to be made [27].  

However, Brownlee et al showed that a reasonably reliable estimate for mean effective 

dosage (fatigue strength) can be calculated from as few as five to ten samples [21].  They 

go on to make the following conclusions when comparing the two methods:  (1) the 

probit method requires substantially more observations to obtain results similar to the 

staircase method, (2) small-sample performance of the staircase method is known 

whereas small-sample performance of the probit method is unknown and difficult to 

compute (note that this conclusion has since been addressed to some degree by Nishijima 

[62]), (3) staircase parameter estimates are easy to compute arithmetically whereas probit 

estimates require either a complex iterative method or graphical method involving 

judgment, and (4) staircase estimates can always be determined from the data whereas 

probit estimates may not exist.  For these reasons, Brownlee et al recommend use of the 
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staircase method over the probit method for tests in which the arrangement of the 

sequence of trials is not prohibited by external considerations such as cost or difficulty in 

experimental setup. In fact, the Japan Society of Mechanical Engineers (JSME) standard 

method for determination of S-N curves utilizes a 14-specimen strategy in which six 

specimens are devoted to determination of the horizontal portion of the curve (i.e., the 

fatigue limit) using a basic staircase strategy [56]. 

The two-point strategy outlined by Little is essentially a more efficient extension 

of the staircase strategy [44; 46].  The two-point method follows the staircase protocol up 

until the first test result in which two stress levels are observed with nonzero or nonunity 

proportions of survivals, after which specimens are tested only at these two stress levels.  

Thus, using Figure 12, the two-point method would be identical to the staircase method 

over the first nine specimens, after which tests would only be conducted at the 70.0 and 

72.5 ksi levels – eliminating the four tests at the 75.0 ksi level and the one remaining test 

at 67.5 ksi where statistical weight is diminished.  The analysis of the two-point method 

in essence reduces to a probit analysis with only two stress levels.  Little provides an 

analytic expression for the estimation of the asymptotic variance of the median fatigue 

strength, allowing calculation of confidence limits for the median fatigue strength.  Little 

recommends spacing between stress levels on the order of 2/3 to 3/2 the standard 

deviation of the underlying fatigue strength distribution. 

The arcsin√P method utilizes a prescribed number of uniformly-spaced stress 

levels with a fixed number of specimens tested at each level [20].  Braam and van der 

Zwaag provide an analytical expression for the probability density function for the 

probability of failure (P) based on the observed proportion of failed specimens at each 

stress level tested (Pi).  The method is known as the arcsin√P method due to the fact that 

the proportion of failed specimens at each stress level appears transformed in the 

parameter expressions as arcsin√Pi.  Thus, the test approach is basically similar to the 

probit approach whereas the analysis is much more straightforward and similar to the 

staircase approach.  Braam and van der Zwaag found the staircase and arcsin√P methods 

to be relatively similar in accuracy and efficiency. 
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Accelerated Stress Tests 

Another approach to fatigue limit testing is the use of accelerated stress tests.  

Accelerated stress testing includes those tests in which the stress level is increased during 

the test of a specimen in order to ensure it fails in a reasonable number of cycles.  This 

approach differs from the other tests discussed which utilize a constant stress level for 

each individual specimen.  Two such accelerated stress methods are the Prot method and 

the step-loading method. 

In the Prot method, testing begins at a stress level below the estimated fatigue 

limit, with the stress level increasing at a constant rate until failure occurs [72].  Each 

successive test is accomplished at a reduced rate of stress increase resulting in a series of 

stress values corresponding to each rate of stress increase.  One of the concerns regarding 

use of such a method is the influence of coaxing on the results.  Coaxing, or “under-

stressing,” refers to the phenomenon of raising the fatigue strength in a material by 

subjecting it to lower stresses relative to the fatigue strength.  There is some debate over 

whether this phenomenon really occurs or is just the product of statistical skewing of the 

population [33; 61; 74].  Regardless, the Prot method has been found by Ward et al to be 

valid for welded SAE 4340 steel and applicable to ferrous metals with a well-defined 

fatigue limit, although some ferrous metals have been shown to display coaxing behavior 

[24; 90].  As for titanium alloys, some researchers have indicated that coaxing behavior is 

of little concern for high cycle testing.  However, Bathias and Ni reported in a 1993 study 

that there indeed did appear to be a coaxing effect on Ti-6Al-4V samples tested using an 

ultrasonic apparatus at 20 kHz [16].  Overall, one of the primary disadvantages of the 

Prot method is the need to conduct a series of tests at non-constant stresses.  This 

requirement adds significant complexity to the overall test approach.  In general, the Prot 

method is not very widely used – if at all – for fatigue strength testing today. 

The step-loading method demonstrated by Nicholas is similar in concept to the 

Prot method in that the stress is not held constant for each specimen [61].  In this 

procedure, specimens were tested to a given number of cycles (specifically, 107) and if 

they survived, the stress was increased by approximately 5% and the specimens were 

again retested up to 107 cycles.  This process was repeated until each specimen failed.  A 

linear interpolation scheme was used to calculate the fatigue limit stress for each 
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specimen.  The procedure when applied to the titanium alloy Ti-6Al-4V produced data 

consistent with fatigue strength tests using conventional S-N testing.  

Advanced Statistical Methods 

The final group of fatigue strength test approaches are lumped together under the 

heading of advanced statistical methods.  Three such approaches will be discussed:  (1) 

random fatigue limit modeling, (2) Bayesian methods, and (3) bootstrapping methods. 

Random fatigue limit (RFL) modeling explicitly assumes that each specimen has 

its own fatigue limit based on its unique microstructure.  Thus, there is an associated 

fatigue strength distribution at each specified number of cycles [58].  Pascual and Meeker 

proposed a method incorporating maximum likelihood estimation to produce 

probabilistic S-N curves which account for the behavior visually represented by the 

distributions shown in Figure 13 [66].  There are two distributions which must be 

modeled using the RFL model – namely, the conditional distribution in fatigue life at a 

specified stress level given fatigue limit (the horizontal distributions in Figure 13) and the 

distribution in fatigue strength at a specified fatigue life (the vertical distributions in 

Figure 13).  Pascual and Meeker considered several combinations of analytical 

distributions to model these random variables.  Based on the findings of numerous 

researchers (such as Sinclair and Dolan [78]), the conditional distribution of fatigue life is 

generally assumed to have a lognormal distribution (although this assumption is not 

required).  The distribution in fatigue strength (or, random fatigue limit) is a bit more of 

an unknown, but several reasonable distributions were investigated with the Weibull 

distribution showing significant promise [10].  The mechanics of the RFL model are 

rather detailed (and are discussed in depth in Chapter V) but have been simplified by the 

authors who offer available software to perform the necessary calculations. 

Pascual and Meeker’s work takes a bold step in better modeling observable 

characteristics of S-N data using a manageable mathematical formulation.  This effort 

builds upon Nelson’s work in fitting fatigue curves with nonconstant standard deviation 

associated with each stress level, which also utilized maximum likelihood methods to 

allow use of runout data [59].  Specifically, the RFL method accounts for the increase in 

standard deviation of fatigue life at lower stress levels as well as the curvature and 

flattening of the S-N curve in the HCF regime.  This flattening effect is observed in the 
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probabilistic S-N curve shown in Figure 14.  By treating fatigue limit as a property 

specific to each specimen rather than an overall material property, their approach also 

provides a better estimate of fatigue limit than conventional S-N analysis allows.  

Conventional analysis which assumes a single-valued constant fatigue limit for all 

specimens must by necessity result in an estimate of fatigue limit below the lowest stress 

tested, thus producing an unrealistically low value. 

 

Figure 13.  Fatigue life and fatigue strength distributions (from Nelson [58]). 

 

Figure 14.  Probabilistic S-N curves based on random fatigue limit modeling of 
nickel superalloy data (from Meeker and Escobar [50]). 



 

 38 

As an alternative approach, Bayesian statistical methods are an established means 

of estimation which utilize prior information, whether qualitative or quantitative in 

nature, to augment and enhance real test data to provide a better estimate of population 

parameters [38].  Estimation of a median fatigue strength and its associated dispersion is 

a means of statistical inference based on a small sample of test data in order to make 

conclusions based on the entire population of a particular material.  The typical approach 

to statistical inference is to use hypothesis testing or confidence interval estimation using 

objective data in the form of independent samples from a similar population.  In a 

Bayesian approach, additional sources of information of generally lesser quality are used 

to augment this objective data in order to improve the parameter estimates.  For example, 

one may use prototype test data to augment limited test data on a full-up article in order 

to provide a more complete picture of real performance.  

With respect to the RFL model, Johnson et al proposed incorporation of a 

hierarchical Bayesian approach to provide a means for parameter estimation (in lieu of 

Pascual and Meeker’s maximum likelihood approach) [39].  The general approach is to 

specify prior distributions for each of the RFL model parameters.  These prior 

distributions are used in conjunction with the observed fatigue test data to determine 

posterior parameter distributions which can then be used to draw statistical inferences on 

fatigue limit.  Johnson et al claim that the primary advantage to this approach is the 

ability to use prior information in the analysis beyond that data collected in the fatigue 

test sample.  Since development of new materials is generally evolutionary, a decent 

picture of what some of the parameter distributions will look like already exists based on 

tests of similar materials or preliminary analysis of the material under investigation.  In 

addition, some numerical advantages are realized so long as the choices of prior 

distribution guarantee a proper posterior distribution which can be analyzed.  Besides the 

disadvantage of having to choose suitable prior distributions which allow a proper 

posterior distribution, there is the standard pitfall of Bayesian analysis to contend with:  

namely, how to make generally subjective prior distribution estimates based on limited 

data without compromising the objectivity of the test program. 

In addition to Bayesian methods, bootstrap methods may also provide some 

opportunities to more efficiently model fatigue strength behavior [12].  The bootstrap 



 

 39 

method is a data-based simulation which utilizes multiple random draws from real test 

data to make statistical inferences about the underlying population [31].  Essentially, the 

repeated draws from the test data pool allow estimates of parameter confidence intervals 

which can be quite accurate.  The main drawback to bootstrapping is the reuse of existing 

data which may skew the results depending on the presence of outliers as well as any 

other misrepresentation of the sample with respect to the true population.  It is also a 

somewhat difficult method to explain and rationalize to decision makers.   

Ultra High Cycle Fatigue Research 

UHCF behavior has in the last decade become a very hot topic in the fatigue 

community as new testing methods have allowed considerably more test data to be 

generated at fatigue lives that were previously impractical to test.  In this section, some of 

the major findings and current research thrusts related to UHCF research will be 

introduced in an overview manner. 

Ultrasonic Fatigue Testing 

Exhaustive testing in the gigacycle regime has only fairly recently been made 

possible by the introduction of ultrasonic test equipment.  These test machines can 

operate at frequencies in the 20 kHz range (and beyond), thus reducing the time required 

to conduct a test of 109 cycles down to hours rather than days, weeks, or even months 

using lower frequency machines.  These ultrasonic test machines operate based on the 

longitudinal vibration of the specimen at its resonant frequency in the axial loading mode.  

The specimen is mounted on an amplifying horn which is attached to a transducer which 

provides ultrasonic excitation at a frequency of approximately 20 kHz (for most current 

apparatus) – the resonant frequency of both the horn and specimen.  Strain data can be 

measured through strain gages (so long as they do not fail), or through the use of an eddy 

current or laser sensor at the free end of the specimen.  A schematic of a version of this 

system is depicted in Figure 15. 
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Figure 15.  Schematic view of a particluar ultrasonic test apparatus (from Bathias 
and Ni [16]). 

Bathias and Ni performed a study comparing the fatigue limit behavior of three 

materials (Udimet 500, 17-4PH, and Ti-6Al-4V) using an ultrasonic test apparatus and 

conventional lower frequency machines [16].  Their results indicated that ultrasonic 

frequency excitation at lower stress amplitudes effectively increases the material’s fatigue 

strength (thus, coaxing appears to occur at these high frequencies).  In addition, the 

nickel-based superalloy Udimet 500 appeared to exhibit similar fatigue limit behavior 

using either the ultrasonic high-frequency apparatus or conventional machines at much 

lower frequency.  On the other hand, the 17-4PH and Ti-6Al-4V specimens appeared to 

exhibit slightly better fatigue resistance using the ultrasonic equipment.  Thus, it appears 
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that different materials respond in different fashions to ultrasonic fatigue excitation.  

These results are consistent with the findings of other researchers comparing fatigue 

response at widely different frequencies [40; 79]. 

Fatigue Limit Behavior in the Gigacycle Regime 

Many design and analysis approaches are based on the assumption that a fatigue 

limit exists for a material.  This assumption allows the use of a component at stresses 

below the fatigue limit for a theoretical infinite number of cycles.  However, recent 

research raises the question of whether a fatigue limit exists in materials previously 

thought to exhibit one, such as ferrous metals.  As Stanzl-Tschegg describes in her 

editorial on the state of fatigue testing in the very high cycle regime, 

“During the last few years, long life fatigue failures have been detected 
even in materials which were assumed to have an endurance limit, such as 
high strength steels.”  (Stanzl-Tschegg, 2002 [82]) 

These failures in regimes thought to be free of fatigue failures are obviously of great 

concern for engineers who are designing components to withstand a very large number of 

cycles – more than can be adequately tested in a reasonably efficient manner with respect 

to time and cost.  This is especially true given the longer and longer service lives 

expected of today’s products, to include aircraft, spacecraft, shipping vessels, high-speed 

trains, and the like. 

Miller and O’Donnell discussed the elimination of the fatigue limit conceptual 

model [51].  They argue that research shows that under variable loading, the few higher 

stress cycles have a very significant impact in overcoming the fatigue resistance of a 

material.  Thus, in general, fatigue limit is observable only under constant cyclic stress 

range conditions, which are rarely encountered under actual service conditions.  They go 

on to point out that other factors also significantly deteriorate the fatigue resistance of a 

material in the very high cycle regime – such as corrosive environments and fretting.  

Thus, they appear to argue that fatigue limit is a concept that only adequately applies to 

pristine materials tested under laboratory conditions and should not be applied so 

liberally to the analysis of engineering materials operated under more dynamic 

conditions. 
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Bathias also concluded there was no infinite fatigue life in metallic materials 

based on his study of the UHCF behavior of aluminum matrix composites, high-strength 

steels, titanium alloys, and nickel-based superalloys [15].  His findings indicated that 

there was a marked decrease in fatigue strength from the 106-cycle point to beyond 108 

cycles for many materials.  Results indicated that fatigue failures in the UHCF regime 

which occurred below the asymptotic fatigue limit in the HCF regime (based on 

statistical analysis of tests conducted at 106-107 cycles) were characterized by internal 

(subsurface) crack initiation.  The reasons why this mechanism would occur were not 

immediately obvious, but the roles of inclusions, porosity, and grain size were 

recommended for further study.   

Shiozawa et al also observed this phenomenon of subsurface crack initiation in 

the UHCF regime in their study of high carbon-chromium bearing steel using rotary 

bending fatigue tests [77].  They reported that, 

“The remarkable shape of the S-N curve obtained in this study was 
different from a step-wise one reported in literature and was characterized 
as a duplex S-N curve which is composed of two different S-N curves 
corresponding to the respective fracture modes.”  (Shiozawa, Lu, and 
Ishihara, 2001 [77]) 

This so-called duplex (or bimodal) S-N curve is depicted in Figure 16, which shows the 

two associated probability distributions for surface and subsurface failure modes and how 

these distributions affect the overall S-N curve. 

Other researchers have also observed this bimodal behavior in the gigacycle 

regime using a variety of fatigue tests on different materials.  Nishijima and Kanazawa 

documented bimodal S-N behavior in steels without hardened surfaces, also noting the 

same phenomenon of internal initiation in the gigacycle regime [64].  Mughrabi also 

investigated this theory of a two-stage S-N curve (see Figure 17) and proposed conditions 

for which the internal defects could become the life-controlling mechanism in the 

gigacycle regime [54].  These conditions relate to the following:  (1) the geometrical 

roles of the size and volume density of inclusions, (2) internal fatigue cracks originating 

from internal inclusions, and (3) crack initiation at pores.  However, he notes that there is 

still a need to investigate how these internal cracks form as the process is currently not 

well understood.   
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Surface failure mode   Internal failure modeSurface failure mode   Internal failure mode

 

Figure 16.  Conceptual S-N curves using the concept of a bimodal model (from 
Shiozawa et al [77]). 
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Figure 17.  Schematic illustration of bimodal S-N behavior (from Mughrabi [54]). 

The work of these researchers and others has led to the acknowledgement of a 

bimodal shape to the stress-life curve which indicates a decrease in fatigue strength in 
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and beyond the gigacycle regime.  These investigations clearly indicate that there is a 

second fatigue failure mechanism due to subsurface crack initiation at these very long 

fatigue lives which produces the drop in fatigue strength.  Chandran used Poisson defect 

statistics in conjunction with Monte Carlo simulation to represent this bimodal behavior 

[22].  However, a detailed understanding of how these internal cracks form is not yet well 

understood, although it is currently being explored, with particular fervor by a number of 

Japanese researchers interested in “fish-eye” (internally initiated) failures of ferrous 

metals.  Characterization of this bimodal behavior using fatigue strength tests intended 

for application to a single mode fatigue strength distribution remains a challenge as well.  

Air Force Research Laboratory Research 

Preliminary test results in the UHCF regime collected by the Air Force Research 

Laboratory’s Materials and Manufacturing Directorate (AFRL/ML) using Ti-6Al-4V 

under fully-reversed loading conditions (shown in Figure 18, listed in Appendix A) does 

not seem to reveal the bimodal behavior discovered by other researchers [4].  However, it 

is quite possible that the very limited number of specimens tested in the UHCF regime 

have failure mode distributions characterized by Type A in Figure 16.  Thus, the internal 

failure mechanisms may not have been encountered yet because the surface failure mode 

has a greater probability of being encountered at fatigue lives tested thus far.  Atrens et al 

reported in a 1983 study of the fatigue strength of Ti-6Al-4V in the region of 107-108 

cycles that a noticeable drop in the fatigue strength was observed [13].  Moreover, these 

failures at lower stress levels were characterized by subsurface crack initiation.  To date, 

failures observed in AFRL/ML testing have all been characterized by surface initiation.  

The question remains as to whether this bimodal behavior observed by Atrens et al will 

be observable in future Ti-6Al-4V tests conducted by AFRL/ML.  

AFRL/ML scientists are considering several approaches to determining if bimodal 

behavior in Ti-6Al-4V samples can be detected.  One approach is the obvious idea of 

testing out to higher numbers of cycles at lower stress levels to see if reduced fatigue 

strengths will be encountered.  Another avenue of approach is to use residual stresses to 

effectively increase the fatigue resistance of the surface material, thereby increasing the 

likelihood that the internally-initiated failure mode will be encountered.  Both of these 

testing avenues are relatively feasible and likely to occur.  AFRL/ML is also developing a 
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means to conduct gigacycle testing at stress ratios other than fully-reversed loading.  

Atrens et al reported that mean stress possibly plays a major role in the decrease in 

fatigue strength between 107 and 108 cycles [13].  Thus, use of stress ratios other than -1 

may allow detection of the second failure mode within the UHCF regime.  It is important 

to note that Ti-6Al-4V samples used in the tests to date have been machined from very 

high-quality material manufactured under very precise conditions.  Thus, the material is 

generally free of major defects as compared to lesser quality samples.  This comparative 

absence of defects in the material could account for the lack of internally initiated failures 

in the gigacycle regime (as these failures are initiated at internal defects). 
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Figure 18.  S-N test data generated from HCF S&T program for Ti-6Al-4V under 
fully-reversed loading [4]. 

Titanium and Titanium Alloys 

The purpose of this section is to give the reader an introduction to titanium and 

titanium alloys, describe the differences in titanium alloy microstructures, and provide an 

overview of the various heat treatments of titanium alloys.   
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Introduction to Titanium and Titanium Alloys 

Titanium is abundant in the earth’s crust—the fourth most abundant metallic 

element, in fact [87].  In its natural state, it is generally found as an oxide ore, and it was 

not isolated with high purity until 1910.  It first came into use as a structural material in 

the 1950s, stimulated by the aerospace industry.  Specifically, the superiority of titanium 

alloys compared with steels (up to about 540°C) led to initial use in jet engines, and by 

the 1960s, over 90% of titanium production was for jet engine applications [28]. 

Aerospace applications continue to drive the titanium market, although titanium and its 

alloys are finding their way into ever more applications due to their many desirable 

properties.  These properties include a relatively low density (about 60% of that of steel), 

high strength-to-weight ratios, corrosion resistance in many environments due to readily 

formed protective oxide layers, and relatively stable properties even at high temperatures.   

Titanium has a high melting temperature (1668°C) but undergoes an allotropic 

transformation from a hexagonally close-packed (h.c.p.) lattice structure at lower 

temperatures to a body centered cubic (b.c.c.) structure at higher temperatures; 

specifically, this transformation occurs at about 882°C for commercially pure titanium 

[28].  This allotropic transformation allows more diverse strengthening opportunities, as 

compared to non-ferrous alloys such as those comprised chiefly of aluminum or copper.  

The thermal-mechanical processing of titanium alloys is the mechanism by which its 

microstructure and properties are controlled, and thus tailored for specific applications. 

Titanium alloys are generally divided into three classes:  alpha, alpha-beta, and 

beta alloys.  The alpha phase corresponds to the h.c.p. structure, while the beta phase 

corresponds to the b.c.c. structure, and thus the alpha-beta phase occurs when both 

structures are present.  Thermal treatments may be applied to an alloy to modify the 

phase structure.  The addition of alloying elements may also be used to control the phase 

transitions.  For example, the addition of aluminum stabilizes the alpha phase by raising 

the temperature of the alpha-beta transformation.  Ti-6Al-4V is an alpha-beta type alloy, 

which incorporates 6% aluminum and 4% vanadium.  It was first introduced in 1954 and 

is considered a general-purpose grade of titanium, recognized as the “workhorse titanium 

alloy” [87].  Typical applications of Ti-6Al-4V include aircraft turbine and compressor 

blades and disks, surgical implants, and pressure valves. 
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Heat Treatment 

Titanium and its alloys are generally heat treated for several purposes:  (1) to 

reduce residual stresses developed during fabrication, (2) to improve ductility, 

machinability, and dimensional and structural stability, (3) to increase material strength, 

and (4) to optimize special properties such as fracture toughness, fatigue strength, or 

creep strength [29].   

Stress relieving (also called stress-relief annealing) is the process used to reduce 

residual stresses developed through fabrication.  For fatigue testing purposes, removal of 

residual stresses is important in order to accurately calculate the true stress within a 

specimen under loading, and thus to remove variability in the fatigue life for a given 

applied stress due to residual stresses rather than material behavior.  Stress relieving is 

accomplished by heating the metal over a period of time, with stress-relief treatments 

(time and temperature) specified based on the specific material.  For Ti-6Al-4V, stress-

relief treatment generally requires 1-4 hours at 480-650°C, with higher temperatures used 

for shorter times and lower temperatures used for longer times [29]. 

Process annealing is a fairly general term which applies to treatment techniques 

intended to increase toughness, ductility at room temperature, dimensional and thermal 

stability, and sometimes creep resistance [29].  Annealing, however, can be used as a 

general term to describe any softening of a metal through heating followed by gradual 

cooling, and therefore it is often used in conjunction with stress-relief treatment, solution 

treatment, and other processing treatments.  Common process annealing treatments 

include mill annealing, recrystallization annealing, and beta annealing [29].  Mill 

annealing is a general-purpose heat treatment given to mill products.  It is not a full 

anneal and may leave traces of cold or warm working in heavily worked products.  

Recrystallization annealing is used to improve material toughness by heating the metal to 

the upper end of the alpha-beta range, holding this temperature, and then slowly cooling.  

Beta annealing heats the metal to beyond the beta transus followed by a slow cool.  

Solution treating and aging is used to improve strength characteristics of the 

material [28].  Solution treating typically requires heating to a temperature 28-83°C 

below the beta transus of the alloy in order to obtain high strength with adequate ductility 

(heating into the beta region may be desirable for improving fracture toughness or stress 
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corrosion resistance).  Proper temperature control is important for solution treating in 

order to prevent accidental crossover into the beta region, which reduces tensile 

properties (especially ductility).  The rate of cooling from solution-treating temperatures 

has a significant impact on the material’s strength characteristics.  If cooling occurs too 

slowly, appreciable diffusion may occur and decomposition of the beta phase material 

may reduce strengthening.  Air or fan cooling may be adequate for alloys with a high 

content of beta stabilizers or for products of small section size, but in general a quenchant 

is required for alpha-beta alloys.  The final step in the process requires reheating to an 

aging temperature.  This reheating causes decomposition of the supersaturated beta phase 

which is retained during quenching.  Aging at or near the annealing temperature results in 

overaging, resulting in material said to be solution treated and overaged (STOA), which 

allows modest increase in strength performance yet retains satisfactory toughness and 

dimensional stability. 

Conclusion 

This chapter has introduced some of the preliminary concepts and the literature 

survey necessary for an understanding of the research findings to follow.  The next 

chapter presents a detailed investigation of the staircase method.  This method is 

currently widely used to estimate fatigue strength at a given number of cycles, although 

the method’s reliability in assessing fatigue strength variance has been a topic of 

considerable research in recent years.  As discussed, the simplicity in test protocol, along 

with the straightforward data analysis, makes the method ideal for use, assuming 

deficiencies can be overcome.  The results of the next chapter will be validated using the 

alpha-beta (α-β) Ti-6Al-4V alloy. 
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III. INVESTIGATION OF THE STAIRCASE METHOD 

The purpose of this chapter is to provide a detailed investigation of the staircase method 

in order to assess its applicability to fatigue strength testing.  In the first part of the 

chapter, details of the statistical method will be presented along with a survey of various 

means of improving fatigue strength parameter estimates using staircase analysis.  Next, a 

numerical simulation study will be presented.  This study analyzed the effects of staircase 

parameter settings on fatigue strength estimates using the Dixon-Mood method, and 

resulted in a new approach to calculating standard deviation estimates using staircase 

data.  In addition, bootstrapping and staircase iteration were investigated as possible 

means of improving staircase results.  The chapter culminates in a modified method of 

analyzing staircase test data in order to reduce both the bias and scatter inherent in fatigue 

strength estimates based on small-sample fatigue tests. 

Dixon-Mood Analysis of Staircase Data 

In the previous chapter, an overview of the staircase method was presented.  

Recall that in a staircase test, specimens are tested sequentially, with the first specimen 

tested in a fatigue testing apparatus set at an initial stress level (denoted as Sinit).  The 

specimen is fatigued until it either fails or reaches the maximum number of cycles at 

which the fatigue strength is to be estimated.  If the specimen fails before reaching the 

maximum number of cycles, the stress level for the next specimen is decreased by a given 

interval (i.e., the step size, denoted as s).  Conversely, if the specimen reaches the 

maximum number of cycles without failing (i.e., a runout), then the stress level for the 

next specimen is increased by s.  This process is repeated until all the specimens allocated 

for the experiment have been used.  In such a constant-step protocol, there are three 

parameters which the researcher must specify:  (1) the starting stress, Sinit, (2) the step 

size, s, and (3) the number of specimens, N.   

In 1948, Dixon and Mood presented a means of analyzing data generated in such 

a fashion (then called the “up-and-down” method) [27].  Their objective was to analyze 

results from explosives tests conducted at various heights.  Tests were conducted at an 

initial height h0, and if the weight exploded then the height for the next test would be 
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lowered by an interval, or it would be raised an interval if the weight did not explode.  

Such a protocol was popularized for the application of fatigue strength testing by Little in 

the 1970s [46].  Discussion of Dixon-Mood’s approach will be couched in fatigue-related 

terms rather than their original explosives testing terminology. 

Dixon and Mood noted several advantages for the use of the staircase method.  

First, the staircase test by its very nature tends to concentrate data near the mean, which 

increases the accuracy with which the mean can be estimated.  Compared to use of a 

balanced test strategy such as the probit method (in which groups of equal size are tested 

at fixed stress levels), Dixon and Mood estimated a “30 to 40 percent” savings in the 

number of specimens required to estimate the mean with a given accuracy.  Another 

advantage is the relative simplicity of the statistical analysis of staircase data.  Unlike the 

probit method which requires iterative equations or graphical techniques involving 

subjective judgment, a set of simple arithmetic equations can be used to provide estimates 

of the fatigue strength mean and its standard deviation using staircase data, provided that 

certain conditions apply.  Brownlee et al also recommended the staircase test over a 

probit-type method because of the staircase test’s advantages in efficiency and simplicity, 

with the following conclusion: 

“In summary, we believe that the up-and-down [staircase] method will 
prove superior to the probit method in any situation wherein the 
arrangement of the trials in series is not prohibited by experimental or cost 
considerations.  Certainly there are many laboratories now using the probit 
method which would profit from a change to the up-and-down [staircase] 
design.” [21] 

The primary condition of the Dixon-Mood analysis is that the variate under 

consideration must be normally distributed.  In the case of fatigue testing, this would 

imply that the fatigue strength distribution must be normally distributed.  This condition 

would seem to be very restrictive and rule out staircase testing for many materials; 

however, a transformation of the stress values may be applied.  For example, the fatigue 

strength distribution of some materials may be reasonably represented using a lognormal 

distribution, in which case the logarithm of stress values would be normally distributed.  

The staircase test would then be conducted using steps of equal intervals with respect to 

the natural logarithm of stress.  Depending on the skewness of the distribution, other 
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transformations may be applied to make the distribution reasonably normal, although 

there is no guarantee that every distribution can be transformed to approach normality.  In 

addition to logarithmic transformations, power transformations are often applied for such 

a purpose.  Squared and cubic transformations (as well as other powers greater than 1) are 

used to reduce negative skewness, while logarithmic and powers less than 1 (such as a 

square-root transformation) as well as negative reciprocals (-1/x) are often used to reduce 

positive skewness [60].  Thus, the normality condition is not as restrictive as it first 

appears.  However, it is likely to often be the case where there is not enough data to 

actually estimate the distribution shape prior to conducting a staircase test.  Thus, one 

must either make a guess as to the shape based on data from a similar material and apply 

an appropriate transformation if non-normal, or simply accept the initial assumption of 

normality and conduct the test without a stress transformation and then use the data from 

the experiment itself to estimate the distribution. 

Dixon and Mood’s second condition of their staircase analysis is that the sample 

size must be large, on the order of 40 to 50 specimens or more.  This condition ensures 

that large sample theory, on which the analysis is based, can be applied.  However, 

additional research with respect to sample size has shown that this condition is actually 

unnecessary when testing for fatigue strength mean.  Brownlee et al note that the 

distribution mean using Dixon-Mood analysis is “reasonably reliable even in samples as 

small as 5 to 10” [21].  In fact, the Japan Society of Mechanical Engineers (JSME) 

recommends a 6-specimen staircase for the determination of the fatigue limit [56].  In 

addition, several different researchers have proposed modifications to Dixon and Mood’s 

original analysis to account for smaller sample sizes.  These modifications will be 

discussed later in this chapter. 

The final condition of the Dixon-Mood approach is that the standard deviation of 

the normal distribution must be roughly estimated prior to testing.  This condition is 

necessary because the equations on which the standard deviation equations are based 

assume that the step size is on the order of 0.5σ to 2.0σ where σ is the true standard 

deviation.  Thus, some knowledge of the standard deviation is required in order to specify 

the step size prior to testing.  This requirement is not as severe as it may appear because 
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usually some data points are available from other testing of the material of interest or a 

similar material in order to provide a rough initial estimate of standard deviation. 

With these assumptions, Dixon and Mood used maximum likelihood estimation 

techniques to analytically solve the problem of determining the mean and standard 

deviation of the variate of interest based on staircase test data.  The results of their 

analysis are summarized by the equations below for estimated fatigue strength mean ( μ̂ ) 

and standard deviation (σ̂ ), which may be considered the “traditional” approach to 

interpreting staircase data [27]:   
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In these equations, the parameter i is an integer denoting the stress level, with imax 

corresponding to the highest stress level in the staircase.  If the majority of specimens 

failed, then the lowest stress level at which a survival occurs (i.e., runout) corresponds to 

the i = 0 level and mi corresponds to the number of specimens which survived each stress 

level.  The next highest stress level would be the i = 1 level, and the stress level one 

above that would be i = 2, etc.  If the majority of specimens survived the given number of 

cycles, then the lowest stress level at which a failure was observed is denoted as the i = 0 

level and mi corresponds to the number of specimens which failed at each stress level.  S0 

is the stress value corresponding to the i = 0 stress level; note that this is not necessarily 

the same as the initial starting stress, Sinit.  As already defined, s is the step size.  The plus 

sign in the equation for μ̂  is used when failures are the majority event, while the minus 

sign is used if survivals are the majority event. 

Use of these equations can be clarified using Example 1, a notional staircase test 

based on underlying properties fairly similar to that of a Ti-6Al-4V alloy at very high 
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cycles.  In this example, a 10-specimen staircase was simulated with Sinit equal to 

395 MPa and step size 5 MPa.  The true underlying fatigue strength distribution was 

modeled as normal, with mean 400 MPa and standard deviation 5 MPa.  Simulated 

staircase data for such an experiment are depicted in Figure 19.  The simulated results 

included 4 failures and 6 survivals.  Since survivals are the majority event, the i = 0 stress 

level corresponds to the lowest stress level at which a failure occurred, or 395 MPa in this 

case.  Then the i = 1 stress level corresponds to 400 MPa, and i = 2 corresponds to 405 

MPa, and i = 3 corresponds to 410 MPa.  Table 2 tabulates the summations required for 

the Dixon-Mood equations.  The summations from this table are used in the Dixon-Mood 

equations, as shown in the calculations which follow. 
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Figure 19.  Notional staircase data for illustration of the Dixon-Mood method. 

Table 2.  Summations for illustration of the Dixon-Mood method.  

Stress Level Stress 
(MPa) 

mi 
(failures) i·mi i2·mi 

i = 0 395 1 0 0 
i = 1 400 2 2 2 
i = 2 405 0 0 0 
i = 3 410 1 3 9 
Sum -- A = 4 B = 5 C = 11 
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Thus, using Example 1, the Dixon-Mood estimates for mean fatigue strength and the 

standard deviation of fatigue strength would be 398.75 MPa and 9.85 MPa, respectively, 

at the cycles tested for the simulated data set.   

Modifications of the Dixon-Mood Estimate for Mean 

There have been no less than three efforts to improve the Dixon-Mood estimate 

for mean for small sample tests.  The first such effort was conducted by Brownlee et al, 

published in 1953 [21].  Their proposed changes for the calculation of mean were 

actually not required if one starts testing near the true mean, as they noted: 

“In many experimental situations the experimenter will be able to guess 
the value of μ to within 2 steps, where the step is the guessed value of σ.  
In these situations the [Dixon-Mood] estimate [for μ] is quite satisfactory, 
being both simple and accurate.”  [21] 

Their proposed method is intended to handle situations in which the initial starting 

stress is more than a couple steps away from the true mean.  In such a case, the initial 

data points will likely be a string of survivals (if the starting stress was too low) or 

failures (if starting too high).  One could simply apply the Dixon-Mood equation over the 

entire set of data, or ignore those initial points with the same outcome and use the Dixon-

Mood equation for the data starting at the first point where the result changes from 

survival to failure, or vice versa.  In fact, this truncation of data is often done, with the 

Dixon-Mood equation applied to the smaller data set.  However, the Brownlee et al 

method takes a different approach, as the following paragraph shows. 

In the Brownlee et al method, one chooses a value n which represents the number 

of specimens which the mean value will be based upon, and the experiment is run until 

there have been n – 1 trials in addition to the initial run of constant sign (all survivals or 
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all failures).  Thus, the total number of specimens (N) is a random variable, with N ≥ n 

(note that N = n if the first and second trials have opposite outcomes).  Each stress level is 

denoted by an integer, with the starting stress denoted as level 0.  Thus, a trial two steps 

above the starting level would be at stress level 2.  The value C’ is defined as the sum of 

the stress levels over the last n – 1 trials and the (N + 1)st trial (which is not performed).  

Then, the estimate for μ, in units of stress level, is given as: 

 
n
C ′

=′μ  (23) 

Example 2 will help demonstrate the simplicity of this method.  Consider a 9-

specimen staircase conducted at starting stress 380 MPa with step size 5 MPa (equal to 

the true standard deviation σ).  Figure 20 illustrates simulated data from such a test.   
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Figure 20.  Notional staircase data for illustration of the Brownlee et al method. 

For this example, N = 9 and n = 6 by the Brownlee et al definitions.  Then, C’ is 

determined by summing the stress levels over the last n – 1 trials and adding the stress 

level for the (N + 1)st trial, which is not performed.  In this case, since the last trial was a 

survival, the next trial, if performed, would be one step higher than the last trial.  Thus, 

C’ would be equal to (4 + 3 + 2 + 3 + 4 + 5), or 21.  Then, μ’ would equal 21/6, or 3.5.  

This value is expressed in stress levels, so the actual fatigue strength mean would be 

found using Sinit + s ·(μ’), or (380 + 5 · 3.5) = 397.5 MPa.  In this case, the estimated 
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mean from the Dixon-Mood equation (Equation 17) is 395.0 MPa.  The true value of 

fatigue strength mean for this simulated data was 400 MPa.  Thus, the Brownlee et al 

method provides an improved estimate for fatigue strength mean.  In some cases, 

however, the two methods may yield the exact same or closely similar results.   

Although the Dixon-Mood method is generally quite accurate for fatigue strength 

mean, the Brownlee et al method offers two significant advantages.  First, it is more 

robust in that it corrects for data in which the first few trials all have the same outcome.  

Thus, one can start a staircase with less knowledge of the true mean and “walk” up or 

down to that mean with less error in calculated results.  Dixon numerically calculated this 

benefit and noted that at initial stresses two or more steps from the mean, the Brownlee et 

al method results in less mean square error (approximately 23% less error beyond three 

steps), although there is slightly more error when tests are conducted starting near the 

mean [26].  The second major advantage is that the modified method makes calculation 

of the mean incredibly simple.  Instead of the computations necessary for the Dixon-

Mood method, one must simply add integers representing stress levels, and then perform 

a single division of two integers.  The computational simplicity of such an approach, 

coupled with less sensitivity to starting stress, makes this method an effective way to 

calculate mean fatigue strength from a set of staircase data.  As if this was not easy 

enough, Dixon offered another approach a decade later. 

In 1965, Dixon published “The Up-and-Down Method for Small Samples” [26], 

very similarly titled to the Brownlee et al paper “The Up-and-Down Method with Small 

Samples.”  Although the papers were similarly titled, the methods proposed were quite 

different.  Like the Brownlee et al method, the Dixon method accounts for a sequence of 

similar outcomes at the start of a test until the staircase “walks” into the general vicinity 

of the mean, where opposite outcomes are encountered.  Unlike the Brownlee et al 

method, Dixon used digital simulation to solve maximum likelihood equations to account 

for the initial series of same outcome results.  Thus, the knowledge gained by these initial 

outcomes is more fully utilized in the actual analysis.  Although more complex than the 

previous method, Dixon reduced these computations into simple lookup tables which can 

be used to translate staircase data into a mean fatigue strength estimate using the 

following equation: 
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 skS f ⋅+=μ̂  (24) 

In this equation, Sf is the final stress value tested, k is a parameter found using the lookup 

table based on the sequence of staircase results, and s is the step size.  Trials are denoted 

by an “X” for a failure, and an “O” for a survival.  Thus, the staircase data from 

Example 2 (Figure 20) would be represented by the sequence OOOOXXOOO.  The value 

for k based on an initial sequence of OOOO followed by XXOOO is -0.263 according to 

the Dixon tables.  Thus, for this simulated data, the estimated mean fatigue strength 

would be (400 – 0.263 · 5) = 398.7 MPa.  Recall that the true mean for this simulated data 

was 400 MPa, so the Dixon estimate is better than both the Brownlee et al (397.5 MPa) 

and original Dixon-Mood (395.0 MPa) estimates.  Dixon’s calculations show that mean 

square errors when starting at or beyond two steps from the true mean are less than the 

Brownlee et al method, which are less than the Dixon-Mood method.  When starting at 

the mean, the Dixon method produces similar mean square error to that of the Brownlee 

et al method.  In addition, the Dixon method is obviously extremely simple, requiring just 

the use of a lookup table and one equation.  However, his tables are only complete for up 

to four initial trials of the same result, followed by up to five more trials.  But, this 

amount of data is shown to be more than adequate for a good estimate of the mean 

fatigue strength, so additional data points are generally unnecessary. 

In 1972, Little expanded upon the work of Dixon by considering the use of 

minimum chi square analysis versus maximum likelihood analysis, using logistic and 

extreme value distributions versus the normal distribution, and considering step sizes of 

s/σ = 2/3 and 3/2 versus 1 [42].  Like Dixon, his work resulted in a series of lookup 

tables.  These tables use the sequence of results and assumed underlying distribution 

shape to lookup the scale factor Δ with which the following equation can be solved: 

 sSinit ⋅Δ+=μ̂  (25) 

Little’s tables are limited to up to four trials after the first crossover in outcomes, 

but may be extended to any number of initial trials of the same result.  Thus, for the data 

from Example 2 (Figure 20), the sequence of results would be OOOOXXOO.  Using 

Little’s table for an underlying normal distribution, Δ would be 3.38 using maximum 

likelihood analysis or 3.37 using minimum chi square analysis.  Thus, the estimated mean 
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fatigue strength would be (380 + 3.38 · 5) = 396.9 MPa.  This estimate is better than 

Dixon-Mood alone.  To fairly compare this method with the others, assume the last data 

point is removed so that each method is based on only 8 total specimens.  Removing the 

last data point changes the Brownlee et al estimate from 397.5 MPa to 396.0 MPa, and 

changes the Dixon estimate from 398.7 MPa to 396.9 MPa.  Thus, the Little estimate is 

the same as Dixon, which is slightly better than Brownlee et al.   

To provide further comparison of the various methods for calculating the fatigue 

strength mean, a total of 40 unique simulated sets of staircase data were generated, each 

with step size 5 MPa, with an underlying normal fatigue strength distribution with mean 

400 MPa and standard deviation 5 MPa.  The staircases used differing starting stresses, 

with 10 sets of data starting 4 steps below the true mean, 10 sets starting 3 steps below, 

10 starting 3 steps above, and 10 starting 4 steps above.  Each staircase was terminated 

when four data points were collected beyond the initial series of similar outcomes.  The 

estimates for fatigue strength mean for the simulated sets of data starting 4 steps below 

the true mean (i.e., starting at 380 MPa) are shown in Table 3.  As the numbers show, the 

modified methods generally provide a slightly better estimate for fatigue strength mean 

compared to Dixon-Mood analysis.  When one considers that these estimates are based 

on staircase tests using on average only 7.5 specimens and initiated at a starting stress 4 

steps (and thus 4 standard deviations) below the true mean, the efficiency of the staircase 

test in providing estimates for the mean fatigue strength really becomes obvious.  

Table 3.  Comparison of various methods of determining fatigue strength mean for 
simulated data sets with true mean of 400 MPa starting at 380 MPa (5 MPa step).  

 Sequence of 
Results 

Dixon-
Mood 

Brownlee 
et al Dixon Little 

(MLE) 
Little 

(min χ2)
Run 1 OOXOOO 387.5 392.0 394.2 394.3 393.7 
Run 2 OOXOOX 390.0 390.0 390.5 390.7 390.5 
Run 3 OOOXOXO 392.5 393.0 393.7 393.7 393.3 
Run 4 OOOXOOO 392.5 397.0 399.2 399.3 398.7 
Run 5 OOOXOOX 395.0 395.0 395.7 395.7 395.5 
Run 6 OOOOXXOO 395.0 396.0 396.9 396.9 396.9 
Run 7 OOOOXOXX 395.8 396.0 395.9 395.9 396.2 
Run 8 OOOOXOOX 400.0 400.0 400.7 400.7 400.5 
Run 9 OOOOOXXOX 399.2 399.0 399.3 399.3 399.0 
Run 10 OOOOOXOXX 400.8 401.0 400.9 400.9 401.2 
Average  7.5 specimens 394.8 395.9 396.7 396.7 396.6 



 

 60 

The data in Table 3, as well as data for the other starting stresses (shown in 

Appendix B), clearly show that the modified methods have more impact compared to 

Dixon-Mood analysis the farther one starts from the mean or the worse the Dixon-Mood 

analysis underestimates (if starting below the mean) or overestimates (if starting above 

the mean) the true mean.  It is also apparent that Little’s tables provide, in general, the 

best estimates for mean fatigue strength for tests with up to four trials after the first 

crossover in outcomes.  Since they are also more robust in that they account for other 

interval sizes and underlying distributions, use of Little’s tables is preferable for small 

sample tests in which the first few trials have the same outcome for tests with up to four 

trials after crossover.  If more than four trials are available after crossover, then Dixon’s 

tables should be used for underlying normal distributions with s ≅ σ.  If the first two trials 

result in opposite outcomes, then the original Dixon-Mood equation should be used 

without modification.  For example, use Little’s tables for a sequence of XXXOXOO, use 

Dixon’s tables for XXXOXOOX, and use Dixon-Mood analysis for XOXOOX. 

Modifications of the Dixon-Mood Estimate for Standard Deviation 

As described in the previous section, the Dixon-Mood method is generally very 

efficient and accurate for calculation of mean fatigue strength when one starts near the 

true mean.  In addition, there are adequate modifications to account for cases in which the 

trials begin significantly far from the true mean.  Few, if any, additional works have been 

published since Little’s work in the 1970s on the subject of improving the mean 

estimates, as that problem has been considered to be adequately solved. 

Unfortunately, the standard deviation estimates provided by Dixon-Mood analysis 

are not nearly so reliable for small-sample tests.  In fact, Brownlee et al dismissed the 

problem of determining the standard deviation with the following conclusion: 

“We have not considered the problem of estimating the scale parameter σ.  
The reason for this is partly that μ is usually the parameter of greater 
interest, but primarily that with small samples no estimate for σ can be 
accurate enough to have much value.  Even if μ were known, and even if 
the trials are conducted at stimuli giving the most efficient estimation, 
over 200 trials would be required to estimate σ within 20 percent with 
confidence of 95 percent.”  [21] 
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Little also expressed this sentiment when he wrote the following as part of his 

study on mean fatigue strengths: 

“Reliable estimation of the standard deviation σ of the underlying normal 
response distribution is quite a different matter however.  The up-and-
down strategy is quite inefficient in this regard.  Consequently its σ 
estimates should be used only in the absence of more reliable prior 
information.”  [42] 

Standard deviation estimation is so difficult using staircase testing because of the 

very nature of the testing itself.  By concentrating the majority of the data points near the 

mean, it is more difficult to get an accurate measure of dispersion, which of course is 

exactly what standard deviation represents.  With few data points in the “tails” of the 

distribution (i.e., the areas of decreasing probability), standard deviation estimates 

become based on data near the center of the distribution.  Therefore, slight differences in 

the central data can lead to very different measures of standard deviation as there is little 

data in the tails to help scope the dispersion.  When there are very many data points, even 

if centrally located, the dispersion can be more accurately measured since the underlying 

distribution (normal) is fixed.  For this reason, one can overcome the difficulties of 

standard deviation estimation using the staircase test if a very large number of specimens 

are available for testing.  However, using a very large number of specimens would defeat 

the whole purpose of doing staircase testing in the first place, which is to realize gains in 

efficiency versus balanced test strategies such as the probit method. 

After many years of apparently little work being published on the staircase test, 

there has recently been considerable effort in this area, specifically with respect to 

standard deviation estimation, by a number of different researchers.  One can reasonably 

speculate that this increased emphasis is due to the following factors:  (1) increasing 

interest in the probabilistic aspects of fatigue, primarily high cycle fatigue, (2) 

dramatically improved processing power of personal computers to handle more complex 

digital simulations, and (3) greater emphasis on efficient test strategies to provide reliable 

estimates due to the high cost of materials and components and longer test times in the 

ultra high cycle regime. 
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Some of the recent research in this area includes investigation of a correction 

factor for standard deviation in small sample tests conducted by Svensson et al in Sweden 

(1999-2000, [85-85]), Braam and van der Zwaag’s modified standard deviation work 

from the Netherlands (1998, [20]), Griffiths and Annis’s use of staircase testing in 

conjunction with RFL analysis for General Electric’s contribution to the National HCF 

S&T Program (2001, [11]), the simulation work of Lin et al for DaimlerChrysler (2001, 

[41]), the modified standard deviation approach of Fang et al in China (2000, [34]), and 

the use of size effect to improve the reliability of staircase results by Rabb in Finland 

(2003, [73]).  Clearly, there is currently a worldwide interest in improving the reliability 

of standard deviation estimates based on staircase data.  Interestingly, none of these 

works reference any of the others and it appears that these recent efforts have emerged 

somewhat independently, and therefore represent unique approaches to the standard 

deviation problem.  The following sections describe some of this work in more detail.   

Svensson-Lorén Correction for Small-Sample Tests 

In 1999, Svensson and Maré published an analysis of the random features of the 

fatigue limit [84].  In this paper, the results of simulation work from small-sample tests 

(≤ 30 specimens) were summarized.  This simulation work suggested (or rather 

confirmed) that the standard deviation estimates using Dixon-Mood analysis are biased.  

In a follow-up paper summarizing the research conducted by Lorén and led by Svensson, 

Maré, and Wadman, it was stated that “we have not found any theoretical solution to the 

problem [of bias] for the general maximum-likelihood method…” [85].  However, a 

linear correction factor was proposed (here called the Svensson-Lorén correction) and 

found to be “an improvement in all maximum-likelihood evaluation procedures, 

including the staircase method.”  Their equation is shown below, where σSL represents the 

Svensson-Lorén corrected standard deviation estimate, σDM is the standard deviation 

estimate based on Dixon-Mood analysis, and N is the total number of specimens:  

 
3−

=
N

N
DMSL σσ  (26) 

The correction is strictly a function of the sample size and has the effect of 

increasing the standard deviation estimate found from Dixon-Mood analysis, with the 
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increase greater for smaller sample sizes.  Since the standard deviation estimate is merely 

multiplied by a constant greater than 1, this correction will yield slightly more scatter in 

results compared to Dixon-Mood.  This correction factor will be analyzed in more detail 

using the simulation work presented later in this chapter. 

Braam and van der Zwaag Correction 

In 1998, Braam and van der Zwaag also used numerical simulation to address the 

adequacy of standard deviation estimates provided by Dixon-Mood analysis [20].  In 

addition, they compared the results of staircase estimates to those calculated using the 

arcsin√P method, which uses uniformly spaced stress levels with a prescribed number of 

specimens at each level.  Like Svensson et al, they identified the bias inherent in small-

sample staircase tests.  They concluded: 

“It has been shown that the staircase method and the arcsin√P 
transformation for determining the fatigue limit of engineering materials 
both yield a correct estimate of the average fatigue limit almost 
irrespective of the number of samples available.  In contrast, the standard 
deviation of the fatigue limit is seriously underestimated by both methods, 
especially in the case of small sets of samples.  For a given set size, the 
error in the standard deviation depends on the ratio of s to σ, where σ is 
unknown by definition.  Both testing methods yield comparable accuracy 
for the average value and both methods suffer from the same problem 
considering the standard deviation.”  [20] 

To address this standard deviation bias, they proposed a correction to the Dixon-

Mood estimate which they claim “gives better results, especially for small data sets” [20].  

Unlike the Svensson-Lorén correction, Braam and van der Zwaag’s proposed correction 

accounts for both the number of specimens as well as the step size.  Their equation is 

shown below, with σBZ denoting their modified standard deviation and other terms as 

previously defined: 
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This equation can be solved iteratively, graphically, or with the help of a solver.  

One can see that for cases in which there are a very large number of specimens, the 
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exponential term goes to zero, and therefore σBZ is approximately equal to σDM.  This 

result is qualitatively satisfying since the Dixon-Mood standard deviation estimate 

improves as the number of samples becomes very large.  Also, when the step size is 

approximately equal to the standard deviation, the pre-exponential term then goes to zero, 

and again σBZ is approximately equal to σDM.  Braam and van der Zwaag appear to accept 

this as qualitatively satisfying as well.  It is not obvious, however, that a good correction 

should behave in this manner.  The scatter inherent in Dixon-Mood estimates may result 

in some standard deviation estimates approximately equal to the step size in spite of, and 

not because of, the true standard deviation of the material.  It is also worth noting that this 

correction was developed based on simulations with step sizes ranging from 0.1σ to 1σ 

and sample sizes ranging from 20 to 100 specimens. 

Braam and van der Zwaag claim that the distribution of standard deviation 

estimates using their proposed correction is less dependent on the step size when 

compared to Dixon-Mood estimates, although they noted a disadvantage in that the 

modified estimate has a broader distribution (i.e., more scatter) than the Dixon-Mood 

approach, especially for smaller sample sizes.  Consider the data depicted previously by 

Figure 19 in which a 10-specimen staircase test was simulated with s = 5 MPa using a 

normally distributed fatigue strength with σ = 5 MPa.  Recall that Dixon-Mood analysis 

resulted in an estimated standard deviation of σDM = 9.85 MPa.  The corrected standard 

deviation estimate using the Braam and van der Zwaag approach can be found using 

Figure 21, where the y-axis represents the difference between the left and right sides of 

the Braam-van der Zwaag equation.  Thus, σBZ is found as the point where the curve 

passes through the x-axis, or approximately 40 MPa in this case.  This corrected standard 

deviation estimate is in fact much worse than the original Dixon-Mood estimate (700% 

error versus 97% error, respectively).  This seemingly surprising result will be shown to 

be a real issue, and not a statistical anomaly, in the next paragraph. 

In the present investigation, a more rigorous comparison of the Dixon-Mood and 

Braam-van der Zwaag estimates was accomplished using additional simulations of 12-

specimen staircase tests conducted under similar assumptions (s = σ = 5 MPa, μ = 400 

MPa, Sinit = 395 MPa), for 10 cases resulting in unique Dixon-Mood standard deviation 

estimates (more than 10 simulations were run, but results using Dixon-Mood are 
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discretized and the simulations were stopped once 10 unique outcomes were observed).  

These runs are summarized in Table 4.  The results of this comparison show that the 

Braam-van der Zwaag estimates (σBZ) were in fact worse than the Dixon-Mood estimates 

(σDM) in almost every case (only being a slight improvement for the one case where the 

Dixon-Mood estimate was already very close to the true value).  For the lowest values of 

Dixon-Mood standard deviation (2.65 MPa), the correction even produced nonsensical 

results of negative standard deviation.  The σDM value of 2.65 MPa is no statistical 

outlier, either.  On the contrary, this result is the most frequent outcome for standard 

deviation using Dixon-Mood analysis for a staircase test under these conditions.   
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Figure 21.  Graphical solution of the Braam and van der Zwaag standard deviation 
equation for the staircase data shown in Figure 19. 

 

 

 

 



 

 66 

Table 4.  Comparison of Dixon-Mood and Braam-van der Zwaag standard 
deviation estimates for 12-specimen staircase tests at s = σ = 5 MPa. 

Standard Deviation (MPa) 

 Sequence of Results Dixon-
Mood 
(σDM) 

Braam-van 
der Zwaag 

(σBZ) 

Braam-van 
der Zwaag, 
modified 
(σBZ

mod) 
Run 1 OOXXOXOOXXOX 2.65 N/A (< 0) 1.3 
Run 2 XOOXOXOXOOXX 2.94 0.07 1.8 
Run 3 OOXXOXXOOXOO 3.48 1.3 2.6 
Run 4 OXOOXXXOOOXX 4.06 2.8 3.6 
Run 5 OOXOXXOXXOOO 4.77 4.8 4.8 
Run 6 OOXOOXOXXXOX 5.64 7.5 6.2 
Run 7 OXOXOOOXOXXO 6.72 11.5 8.0 
Run 8 OXXOOOOXXXOX 7.44 14.9 9.3 
Run 9 OOXXOOOXXXXO 7.66 16.0 9.8 
Run 10 XOOXOXOOOXOX 11.90 55.0 17.0 

 

The Braam-van der Zwaag correction appears to break down when sample sizes 

are very small (a minimum of 20 specimens were used in their initial work).  A small 

change to their original equation was made by replacing σBZ with σDM in the right-hand 

side of the equation.  Making this modification, the following equation results, where the 

modified Braam-van der Zwaag standard deviation estimate is denoted by σBZ
mod.  

Estimates using this equation are also shown in Table 4.  These estimates appear better 

than the estimates obtained using the original equation, although they are still generally 

worse than the Dixon-Mood estimates. 
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Thus, this method does not appear to deliver better fatigue strength estimates 

compared to Dixon-Mood analysis for tests using very few samples.  Additional 

simulations were run with s = σ = 5 MPa, Sinit = 395 MPa, μ = 400 MPa, and n = 20 

specimens.  The results are presented in Table 5, sorted in ascending order of standard 

deviation.  The use of 20 specimens versus the previous simulations with 12 specimens 

has eliminated cases where σBZ is less than zero.  However, the standard deviation 
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estimates using the Braam-van der Zwaag correction are still worse than Dixon-Mood in 

each case, even if the modified correction is used.  However, the average standard 

deviation estimate is better using Braam-van der Zwaag versus Dixon-Mood over this 

small set of data.  This result could explain how the correction appears to reduce the bias 

inherent in the Dixon-Mood method, although with greater scatter.  However, it appears 

that it is only in an average sense that bias is removed.  Standard deviation estimates 

which are too low are even lower using the correction, and estimates which are too high 

are even higher using the correction, for the cases investigated.  Thus, the method does 

not appear to be a viable alternative to Dixon-Mood analysis for very small sample sizes 

(smaller than those originally investigated by Braam and van der Zwaag, N ≤ 20). 

Table 5.  Comparison of Dixon-Mood and Braam-van der Zwaag standard 
deviation estimates for 20-specimen staircase tests at s = σ = 5 MPa.  

Standard Deviation (MPa) 

Run Dixon-
Mood 
(σDM) 

Braam-van 
der Zwaag 

(σBZ) 

Braam-van 
der Zwaag, 
modified 
(σBZ

mod) 
1 2.65 0.9 1.6 
2 2.65 0.9 1.6 
3 2.65 0.9 1.6 
4 3.15 1.7 2.3 
5 3.15 1.7 2.3 
6 3.15 1.7 2.3 
7 3.47 2.3 2.8 
8 3.56 2.4 2.9 
9 3.80 2.8 3.3 
10 3.83 2.9 3.4 
11 3.83 2.9 3.4 
12 4.20 3.6 3.9 
13 4.63 4.4 4.5 
14 5.42 6.1 5.7 
15 5.63 6.5 6.0 
16 5.83 7.0 6.3 
17 6.80 9.3 7.8 
18 7.04 9.8 8.2 
19 7.43 10.9 8.8 
20 8.65 14.4 11.8 

Average 4.58 4.66 4.53 
Std Dev 1.78 3.86 2.83 
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Fang et al Approach 

In 2000, Fang, Zhang, Zhao, and Liu also investigated standard deviation 

estimation using staircase data for the Zhengzhou Research Institute of Mechanical 

Engineering in China [34].  Like Braam and van der Zwaag, they noted that standard 

deviation is a function of both the stress increment s as well as the true standard deviation 

σ.  Unlike Svensson-Lorén and Braam-van der Zwaag, they did not include the effects of 

sample size in their equation.  They characterized the relationship between the ratio of 

estimated standard deviation to true standard deviation and the ratio of step size to true 

standard deviation using the following formula (variables as previously defined): 
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This formula was developed using the following abbreviated rationale.  First, the 

S-N behavior of a material was modeled as linear on a log-log plot so that fatigue life was 

lognormally distributed for a given stress level.  Thus, fatigue life and its standard 

deviation (σN) are modeled as: 

 NPP uSSmcN σ+−+= )log(log 0  (30) 

 )log( 0SSbaN −+=σ  (31) 

 where:   c, m, a, b, S0 are material constants, 

    σN is the standard deviation of logN for a given stress, 

    uP is the standard normal distribution value for probability P, 

    NP is the fatigue life with probability P for a given stress. 

Next, several different steels (40Cr and 42CrV) were tested under various 

conditions (smooth and notched, ambient and under water) with sample sizes for each 

condition ranging from 36 to 62 specimens (for a total of 392 data points).  These data 

were used to create P-S-N plots from which best-estimate σN values could be calculated 

at the fatigue strength associated with the number of cycles of interest.  It is not clear 

based on their paper what method was used to develop these P-S-N curves, but one can 

assume that conventional S-N analysis was used since there is no reference to more 

elaborate methods such as those based on maximum likelihood methods.  Of greater 
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concern, it is not specified how the σN values (which are measures of standard deviation 

in life, not stress) translate into estimates for fatigue strength standard deviation (which 

are associated with stress, and not life).  The paper omits this key step with the following: 

“With these best fitting parameters [for logN and σN] , we can give out the 
standard deviations of the fatigue strengths for the fatigue lives that the 
staircase methods selected.”  [34] 

It can only be speculated that σ estimates are interpreted from the P-S-N data by 

analyzing the vertical distribution at the number of cycles of interest.  These P-S-N 

curves were then used to replicate simulated staircase tests from which sets of Dixon-

Mood standard deviation estimates and step sizes could be found.   

In short, the Fang et al method is another approach to improving standard 

deviation estimates based on staircase data but will not be investigated in more detail.   

Rabb’s Investigation of Staircase Settings 

In 2003, Rabb also conducted a simulation-based investigation of the staircase 

test, noting that “due to the nature of the staircase test, it is very difficult to obtain a 

correct value of the sample standard deviation” [73].  He conducted a simulation of 

10,000 runs to analyze the staircase estimates obtained using a modified maximum 

likelihood method.  His simulations were run with μ = 195.5 MPa and σ = 17.6 MPa, 

which corresponded to the sample values obtained from a 25-specimen staircase test of 

nodular cast iron under fully-reversed loading conducted at Sinit = 213.8 MPa and 

s = 18.25 MPa.  Instead of the Dixon-Mood equations for these estimates, he used the 

following maximum likelihood equation for the conditional probability that there are n 

failures and m survivals in a staircase test: 
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  where:   ni and mi are the failures and survivals on stress level i, 

     pi is the probability of failure on level i, 

     K is a constant, 

     μ̂  is the estimated mean fatigue strength, 

     σ̂  is the estimated standard deviation. 
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Rabb’s approach requires the following stipulations as to what was an 

“acceptable” set of staircase data:  (1) data from tests resulting in only 2 or 3 stress levels 

were unacceptable, (2) the probabilities of failure must increase as stress level increases, 

and (3) for cases in which there were 4 stress levels, there must be at least two failures on 

level 2 and two runouts on level 3.  With these stipulations, the 10,000 runs resulted in 

2423 acceptable tests with 4 levels, and 2123 acceptable tests with 5 levels; thus only 

45.5% of the 25-specimen tests resulted in “acceptable” outcomes allowing evaluation by 

his method.  The simulation data indicated that standard deviation was generally 

underestimated for tests resulting in 4 stress levels, and overestimated for those resulting 

in 5 stress levels.   

Rabb conducted additional simulations to investigate the effects of various 

staircase parameter settings on calculated mean and standard deviation estimates.  He 

looked at three different step sizes (s/σ = 0.85, 1.00, and 1.15), two different sample sizes 

(N = 25 and 30), and two different starting stresses (Sinit = μ and μ + s/2).  Several 

conclusions were drawn from the simulation results.  First, use of the smaller step size 

resulted in a higher frequency of acceptable tests, but also resulted in a poorer estimate 

for standard deviation.  It is rather intuitive that the smaller step would yield more 

acceptable tests as a smaller step should allow more tests with more than 2 or 3 stress 

levels.  As for the smaller step resulting in poorer standard deviation estimates, this effect 

is quantified in more detail in the simulation work presented later in this chapter.  He also 

noted that a higher frequency of acceptable results occurred for cases with the starting 

stress offset higher than the true mean strength.  It also seems intuitive that an offset 

starting stress may result in more stress levels, thus leading to more acceptable tests.  The 

offset starting stress did not have much effect on standard deviation estimates except for 

the 4-level results using the largest step size.  Lastly, the number of specimens had 

relatively little impact on results, although the number of acceptable tests increased for 

the larger sample size.  This conclusion is also intuitive as use of more specimens should 

result in a higher probability of meeting the acceptability conditions.  It is worth noting 

that the conclusion that the number of specimens has little effect on standard deviation is 

only based on his simulations using 25 or 30 samples – this generalization should not 

imply that there would be little difference between say 12 and 30 specimens. 
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In addition to his investigation of the staircase test, Rabb proposed another means 

to investigate the fatigue strength scatter of a material.  Rabb used the concept of a size 

factor to develop a method of evaluating the standard deviation of the fatigue strength.  

His premise is summarized by the following: 

“The statistical size factor is basically determined by the effective stress 
area, or in some cases, the effective stress volume, and the standard 
deviation of the fatigue limit. … It is therefore possible to evaluate a 
reliable estimate of the standard deviation by calculating it from the 
observed statistical size effect from two staircase tests with different 
specimen sizes.”  [73] 

This approach would require a different test strategy with considerations not 

required by staircase testing (such as the use of specimens with different geometries).  

The use of this approach was not explored further in this study, although Rabb’s 

approach is summarized in Appendix C. 

Summary of Standard Deviation Methods 

In the previous sections, several different standard deviation methods were 

introduced, all of which are based on recent research papers (1998-2003).  The methods 

all address the same fundamental issue:  the unreliability of the standard deviation 

estimates obtained from staircase data, especially for small-sample tests.  However, they 

approached this problem from very different angles, some being more general in scope 

(such as the corrections of Svensson et al and Braam-van der Zwaag) and some more 

specific (such as the empirical relation of Fang et al for 40Cr and 42CrV steels).  It is 

clear, however, that this problem is in no way completely solved.  The Svensson et al 

method only increases standard deviation estimates based on small sample sizes by a 

constant greater than 1, and does not address the scatter produced by the Dixon-Mood 

method.  Likewise, the Braam-van der Zwaag method does not address this scatter, but 

on the contrary significantly increases scatter in results.  In addition, this method appears 

to produce estimates which may be worse than Dixon-Mood alone for very small 

samples.  Neither the Svensson et al nor Braam-van der Zwaag methods have been 

applied to real staircase test data in the literature to date.  The approach of Fang et al has 

some holes in detail and in its current form, it is not applicable to general materials.  
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Lastly, the size effect method of Rabb requires a reliable means of estimating effective 

stress areas and the capability to conduct testing with different specimen sizes.  Use of 

this method for other materials beyond nodular cast iron has not been documented. 

In the next section, the problem of standard deviation estimation will be addressed 

through the use of numerical simulation.  Results of this analysis address some of the 

deficiencies of the methods previously described. 

Investigation of Staircase Parameters using Numerical Simulation 

A computer simulation was designed to analyze the effects of staircase parameter 

settings on standard deviation estimates using the Dixon-Mood analysis method.  The 

simulation allows the user to specify the true fatigue strength distribution (modeled as 

normal in all cases) by specifying the mean and standard deviation of the fatigue strength 

at the number of cycles of interest.  The staircase test parameters (starting stress, step 

size, and number of specimens) are specified for each simulation run.  For each 

specimen, the simulation calculates a random fatigue strength based on the specified 

underlying distribution and compares this value to the current stress level (starting with 

the initial stress, Sinit) to determine if the specimen failed or survived.  The stress level is 

increased or decreased for the next specimen according to the staircase protocol.  This 

procedure is repeated until the total number of specimens is reached.  Next, the standard 

deviation of the fatigue strength is calculated according to Dixon-Mood statistics using 

the simulated staircase data.  This represents one run of a simulation case.  This whole 

procedure is then repeated a large number of times (default 1000 runs) in order to provide 

a distribution of calculated standard deviations from which to draw conclusions.   

The simulation was coded using the MATLAB programming language.  

Appendix D shows the underlying code for the staircase simulation.  Various 

modifications to the code were developed for different tasks as needed, including the use 

of a bootstrapping algorithm and various staircase iteration schemes.  The programs used 

for these purposes are also shown in Appendix D. 

Selection of the Number of Simulation Runs 

When drawing conclusions from simulated data, one would obviously prefer a 

very large number of simulation runs to smooth out any variance in results due solely to 
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statistical error related to sample size.  However, depending on the complexity of the 

simulation and capability of the machine processor on which the digital simulation is 

performed, a very large number of simulation runs may require unnecessarily long run 

times.  To address this tradeoff, an initial comparison of results was accomplished for 

simulations made with 1000 runs versus 10,000 runs.  The PC-based MATLAB program 

was usually able to accomplish the 1000-run simulations in less than 2 minutes, whereas 

a 10,000-run simulation case could take on the order of 15 minutes or more (which may 

not sound like much, but when dozens of different parameter settings are being simulated 

at once, this run time becomes many hours).  Table 6 shows the simulation results for a 

particular staircase scenario simulated at both 1000 and 10,000 runs.  Clearly, statistics 

based on 1000-run simulations appear to have adequate significance.  Thus, an iteration 

limit of 1000 runs was used as the default simulation setting. 

Table 6.  Comparison of results for different simulation sizes.  

 Distribution Statistic Runs = 1,000 Runs = 10,000 
Mean 8.40 8.39 
Median 7.60 7.60 
Std deviation 3.24 3.31 

Dixon-Mood 
Std Dev 
(σDM) 

90% conf. interval (5.30, 14.16) (5.30, 14.87) 
Note:  Using true distribution normal with μ = 200 and σ = 10, and staircase test 
with Sinit = 200, s = 10, and 20 specimens. 

 

Effect of Starting Stress on Dixon-Mood Standard Deviation 

As previously discussed, the staircase test efficiently provides a fairly accurate 

estimate of the mean fatigue strength even for small sample sizes when testing starts near 

the true mean.  In addition, it has already been shown that there are adequate means of 

correcting for initial starting stress when calculating mean fatigue strengths (through use 

of the Brownlee et al, Dixon, or Little methods).  Since further investigation of staircase 

parameter settings on mean fatigue strength estimates is thus unnecessary, simulated 

results for fatigue strength means are relegated to Appendix E.  The effect of staircase 

settings on standard deviation estimates requires further investigation, however. 

The first question of interest is what effect the initial starting stress has on 

standard deviation estimates using the Dixon-Mood method.  Rabb’s simulation work, 
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although using a different maximum likelihood method from the Dixon-Mood method, 

showed that initial starting stress has little influence on standard deviation estimates [73].  

However, his simulations only used starting stresses at the mean or half a step higher than 

the mean.  The simulation work in this section considers a wider range of possible 

starting stresses. 

To address this question, simulations were accomplished using an underlying 

Normal(400,5) distribution (i.e., μ = 400, σ = 5).  The step size was equal to the true 

standard deviation.  Three starting stresses were used:  μ, μ + 2σ, and μ - 2σ.  The mean 

standard deviation estimate is plotted as a function of sample size in Figure 22 for each 

starting stress value.  
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Figure 22.  Effect of starting stress on Dixon-Mood standard deviation estimates for 
underlying Normal(400,5) with s/σ = 1. 

The data show that as sample size increases, starting stress really becomes a non-

factor in determining standard deviation, as one would expect.  Even for small sample 

sizes, the effect of starting stress is rather small.  However, use of offset starting stresses 

does have some beneficial effect for small sample sizes by alleviating some of the 

standard deviation bias.  This result is due to the fact that when one starts above or below 
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the mean, it is statistically more likely that a failure will be observed below the mean (if 

starting below) or a survival will be encountered above the mean (if starting above), 

simply because one is conducting more testing above or below the mean, on average.  In 

a small-sample test, just one of these outcomes can lead to a higher estimate of standard 

deviation, and therefore on average, there is a slight reduction of the standard deviation 

underestimating bias for small-sample tests.  This effect is not overwhelming enough to 

eliminate the bias altogether, but does provide some means of softening it.  For the data 

in Figure 22, the mean standard deviation for N = 10 samples is 3.68 (26.3% error) when 

starting at the mean, but 4.06 (18.9% error) when starting two steps below the mean.  The 

traditional approach of using Sinit = μ for staircase tests in order to maximize accuracy of 

the estimate for mean fatigue strength may be modified in order to improve standard 

deviation estimation, especially since adequate means of handling offset starting stresses 

exist for mean fatigue strength estimation.   

Effect of Step Size on Dixon-Mood Standard Deviation 

The long pole in the tent, so to speak, of standard deviation estimation is clearly 

the choice of step size.  Step size plays a direct role in Dixon-Mood’s standard deviation 

calculation, as Equations 18 and 19 show.  It has been commonly understood, stemming 

from Dixon and Mood’s original work, that step sizes should be on the order of 0.5σ to 

2σ when using the staircase method.  Use of steps greater than 2σ results in staircases 

which tend to bounce back and forth across the mean but do not include enough stress 

level data with non-zero or non-unity probabilities of survival.  When this situation 

occurs, Equation 19 becomes applicable, and then the standard deviation estimate 

becomes a strict function of step size alone (0.53s).  Use of steps much smaller than 0.5σ 

risk requiring too many initial data points in order to walk up to or down to the mean in 

case the starting stress is significantly offset.  In addition, use of very small steps results 

in significantly underestimated standard deviations, as this simulation work will confirm.  

There has been some prior work in investigating the choice of step size, as Rabb used 

step sizes ranging from 0.85σ to 1.15σ [73], while Braam and van der Zwaag 

investigated steps from 0.1σ to 1σ [20].  Neither work really recommended a step size, 

but left the impression that a 1σ step size is generally adequate.  Both works, along with 
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that of Svensson et al [84-85], confirmed that the standard deviation estimate is biased 

for small-sample tests, although this bias was not specifically quantified in the papers.  

But bias does not represent the whole story, as the next paragraph describes. 

There are two primary considerations when evaluating the standard deviation 

estimate.  The first is assessing how accurate the test is on average.  In this sense, the goal 

is obviously to have a test method which provides a mean (or median) standard deviation 

estimate as close to the true value of σ as possible – i.e., a test with little bias in results.  

The second consideration involves the scatter in results.  Because a designer or researcher 

must make conclusions based on a limited set of data, it is important that a test should not 

be subject to a wide dispersion in results due to statistical scatter alone.  In addition, the 

test should not be overly sensitive to step size.  Because the true standard deviation is one 

of the very unknowns the test is intended to estimate, it is impossible to be sure whether a 

test is conducted at step 0.8σ or 1.2σ until after the test is already complete (and even 

then, there is still a great deal of uncertainty as to the true standard deviation).  Thus, 

scatter due to step size should also be minimized, if possible.  In short, one prefers a test 

method with estimates as tightly grouped as possible around the true distribution 

parameter without impractical step size constraints.  Recent investigations of the staircase 

standard deviation do not address means of reducing this scatter.     

The first problem to address, therefore, is quantifying the standard deviation bias.  

Simulations were run for both Normal(400,5) and Normal(400,15) underlying fatigue 

strength distributions.  For each simulation, the starting stress was set at the true mean, so 

Sinit = μ = 400.  The following sample sizes were used:  N = 8, 10, 12, 15, 20, 30, 50, 100, 

and 1000 specimens.  For each sample size, 1000 runs were made for each of the 

following step sizes:  s/σ = 0.1, 0.25, 0.5, 0.75, 1, 1.5, and 2.  Thus, a total of 126 

(2×9×7) simulation cases were investigated.  Figure 23 and Figure 24 show the mean 

standard deviation estimates ( DMσ ) for each of these 126 cases.  Simulation data for 

some of these data points are detailed in Appendix F. 
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Figure 23.  Effect of step size and number of specimens on Dixon-Mood standard 
deviation estimates for underlying Normal(400,5). 
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Figure 24.  Effect of step size and number of specimens on Dixon-Mood standard 
deviation estimates for underlying Normal(400,15). 
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When the standard deviation estimates are divided by the true standard deviation 

(i.e., normalized), the same outcome results irrespective of σ.  The normalized mean 

standard deviations for both the Normal(400,5) and Normal(400,15) cases were averaged 

to create Figure 25.  This figure therefore gives the expected value of standard deviation 

using the Dixon-Mood method (for starting stresses at the true mean) for any 

combination of sample size (≥ 8) and step size (0.1σ to 2σ).  For example, if one were to 

conduct a staircase test at s = 1σ using 12 specimens, the average standard deviation 

estimate would be 0.75σ, or 25% too low.  This figure clearly shows that the Dixon-

Mood method underestimates the standard deviation as sample size or step size is 

reduced.  Thus, if a correction were to be made, it should account for both these biasing 

factors.  Note that in the limit (represented by 1000 specimens), the Dixon-Mood method 

is unbiased regardless of step size (in the 0.1σ to 1.7σ region).  Also, the method is 

generally unbiased for step sizes in the 1.6σ to 1.75σ region.  This result is significant in 

that it shows that use of larger steps than currently recommended in the literature would 

result in less standard deviation bias.  Beyond 1.5σ, Equation 19 begins to dominate as 

step sizes get large and the curves converge to the 0.53s line.  
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Figure 25.  Standard deviation bias for Sinit = μ using the Dixon-Mood method. 
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Next, the scatter in standard deviation is addressed.  Like DMσ , the standard 

deviation of the standard deviation estimates ( σσ DM ) is independent of σ when normalized 

by σ.  In other words, both the Normal(400,5) and Normal(400,15) produced similar 

results.  Figure 26 shows the average values of the normalized σσ DM  estimates.  Based on 

this data, it is clear that step sizes in the unbiased region of 1.6σ to 1.75σ produce less 

scatter in results than more traditional steps in the 0.5σ to 1.5σ range.  This effect is due 

in part to the larger steps producing more results requiring analysis by Equation 19, 

which is constant for a given step size.  In general, it appears that use of steps in the 1.6σ 

to 1.75σ range will result in both less bias and less scatter than smaller step sizes. 
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Figure 26.  Standard deviation scatter for Sinit = μ using the Dixon-Mood method. 

By quantifying the standard deviation bias as well as its scatter for small-sample 

tests, the groundwork has been laid for developing methods to alleviate both the bias and 

the scatter in standard deviation.  In the next section, a modified correction for bias will 

be explored.  In the section after that, a method to reduce scatter using the bootstrapping 

technique will be proposed. 
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Correction for Dixon-Mood Standard Deviation 

Development of an approach to reduce standard deviation bias started with the 

Svensson-Lorén correction (Equation 26).  The correction was applied to the 

normalized DMσ estimates shown in Figure 25.  This resulted in the normalized means of 

standard deviation using the Svensson-Lorén correction ( SLσ ) shown in Figure 27.   
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Figure 27.  Svensson-Lorén standard deviation correction applied to 
normalized DMσ estimates. 

These results show a significant shift in the unbiased region from the 1.6σ−1.75σ  

range to the 0.85σ−1.0σ range.  This shift is advantageous for three reasons:  (1) it allows 

relatively unbiased standard deviation estimates at 1σ, which is more consistent with 

recommendations made in prior works, (2) use of smaller steps reduces scatter in mean 

fatigue strength estimates ( DMμ ), and (3) it provides a more balanced bias because high 

initial σ estimates remain high, and low estimates remain low, on average.  Thus, 

although the correction is still rather sensitive to step size based on the initial estimate of 

σ, at least it is not skewed to consistently underestimate standard deviation in the 

0.1σ−1.6σ range, like the Dixon-Mood estimate does. 
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Consider the case in which the standard deviation is initially overestimated, where 

the actual σ is 10, but the experimenter assumes 15 (50% too high).  Thus, when the 

staircase is conducted at a planned 1σ step of 15, it is actually a 1.5σ step.  According to 

Figure 27, if a 15-specimen staircase is conducted with the Svensson-Lorén correction 

applied, the mean result is 1.2σ, or in this case 12.  If the same test were run with an 

initial σ estimate of 5 (50% too low), rather than 15, then the 1σ step actually becomes a 

0.5σ step, and the mean outcome is 0.8σ, or 8.  Thus, the mean result is 20% high or 20% 

low when the initial σ estimate is 50% high or 50% low, respectively.  This result 

demonstrates the balance in bias using the Svensson-Lorén correction, and based on the 

curve shapes from Figure 27 this bias is lessened for larger sample sizes and worsened 

for smaller sample sizes.   

A modified correction was developed which attempted to allow a greater range of 

unbiased estimation than the Svensson-Lorén correction.  Like the Braam-van der Zwaag 

correction, this proposed correction included the ratio of the standard deviation to step 

size.  The Svensson-Lorén sample size factor was included in order to retain the 

advantage of centering the unbiased region around the s = σ step size.  The form of the 

proposed correction is shown below, where A, B, and m are constants dependent on the 

number of samples (values are displayed in Table 7).  For sample sizes not listed in the 

table, use of linear interpolation is adequate to obtain values of A(N) and m(N). 
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 (33) 

Table 7.  Constants used in proposed standard deviation correction.  

Sample Size 
(N) A B m 

8 1.30 1.2 1.72 
10 1.08 1.2 1.10 
12 1.04 1.2 0.78 
15 0.97 1.2 0.55 
20 1.00 1.2 0.45 
30 1.00 1.2 0.22 
50 1.00 1.2 0.15 

> 50 Use Svensson-Lorén correction. 
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The proposed correction is applied to the normalized DMσ estimates in Figure 28.  

Compared to the Svensson-Lorén correction shown in Figure 27, the proposed correction 

has a much broader unbiased region with respect to step size when applied to the mean 

Dixon-Mood estimate.  A comparison of normalized values of DMσ , SLσ , and the 

proposed correction is shown in Figure 29 for N = 20 specimens.  These figures suggest 

that the proposed correction strongly reduces standard deviation bias over a wide range of 

step sizes and therefore represents a significant improvement in standard deviation 

estimation.  Unfortunately, the effectiveness of this correction is not as significant as 

these figures would indicate, due to the effects of statistical scatter, as described next.  
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Figure 28.  Proposed standard deviation correction applied to 
normalized DMσ estimates. 

Although the proposed correction appears to remove bias over a greater range of 

step sizes, it must be understood that these results are only valid when applied to the 

“average” outcome—despite Figure 28, there is still no guarantee that the proposed 

correction is any better on a case-by-case basis (a similar situation was previously shown 

for the Braam-van der Zwaag correction).  In order to assess the adequacy of the 

correction, the scatter in results must be considered.  
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Figure 29.  Comparison of normalized standard deviations for Dixon-Mood mean, 
Svensson-Lorén correction, and proposed correction for N = 20 specimens. 

A comparison of the Svensson-Lorén correction and the proposed correction was 

made for the same conditions as those used in the Braam-van der Zwaag analysis 

summarized in Table 4—namely, Sinit = 395, μ = 400, σ = 5, and N = 12.  Random 

samples of twenty runs were selected for each of the following step sizes:  s/σ = 0.5, 1, 

and 1.5.  The results for three sets of samples are shown in Table 8 (normalized by σ).  

The trends identified in this data are generally consistent for any staircase scenario, but 

are magnified at smaller sample sizes.  As expected, σSL has slightly more scatter (higher 

standard deviation) than σDM, but is generally more accurate, except at bigger step sizes 

(which have already been shown to produce less bias using Dixon-Mood).  When Dixon-

Mood overestimates the result, σSL is obviously worse than σDM (since Svensson-Lorén 

always multiplies the estimate by a number greater than 1).  Compared to both Dixon-

Mood and Svensson-Lorén, the proposed correction tends to have more scatter (though 

less than Braam-van der Zwaag).  Unlike Braam-van der Zwaag, the proposed correction 

does produce better estimates than Dixon-Mood for step sizes on the order of 1σ, 

especially when the Dixon-Mood estimate is near its mean value.  In fact, the correction 

generally produces better results than Dixon-Mood whenever the results are near their 
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mean value.  Table 9 shows the proposed method compared to Dixon-Mood and Braam-

van der Zwaag for the 20-specimen data originally shown in Table 5.  Note how the 

proposed method is more accurate than Braam-van der Zwaag when Dixon-Mood 

underestimates, but behaves similarly to Braam-van der Zwaag when Dixon-Mood 

overestimates the true standard deviation.  

Overall, despite less bias when based on average values, the proposed correction 

suffers from increased scatter in results, primarily due to slight underestimation when 

results are on the very low end of the distribution and large overestimation when they are 

on the high end.  In short, the proposed correction, without further modification, is 

generally a poorer estimator than the Svensson-Lorén correction. 

Table 8.  Comparison of normalized standard deviations using Dixon-Mood, 
Svensson-Lorén, and the proposed correction for individual random samples. 

s = 1σ s = 0.5σ s = 1.5σ 
Run Dixon-

Mood 

(σDM) 

Svensson-
Lorén 

(σSL) 

Proposed 
Correction 

(σPC) 

Dixon-
Mood 

(σDM) 

Svensson-
Lorén 

(σSL) 

Proposed 
Correction 

(σPC) 

Dixon-
Mood 

(σDM) 

Svensson-
Lorén 

(σSL) 

Proposed 
Correction 

(σPC) 

1 0.53 0.71 0.52 0.27 0.35 0.15 0.80 1.06 1.07 
2 0.53 0.71 0.52 0.27 0.35 0.15 0.80 1.06 1.07 
3 0.53 0.71 0.52 0.27 0.35 0.15 0.80 1.06 1.07 
4 0.53 0.71 0.52 0.29 0.39 0.18 0.80 1.06 1.07 
5 0.53 0.71 0.52 0.41 0.54 0.32 0.80 1.06 1.07 
6 0.53 0.71 0.52 0.48 0.64 0.43 0.80 1.06 1.07 
7 0.53 0.71 0.52 0.48 0.64 0.43 0.80 1.06 1.07 
8 0.53 0.71 0.52 0.48 0.64 0.43 0.80 1.06 1.07 
9 0.53 0.71 0.52 0.48 0.64 0.43 0.80 1.06 1.07 
10 0.59 0.78 0.62 0.48 0.64 0.43 0.80 1.06 1.07 
11 0.69 0.93 0.83 0.54 0.72 0.54 0.88 1.17 1.27 
12 0.69 0.93 0.83 0.56 0.75 0.58 0.88 1.17 1.27 
13 0.69 0.93 0.83 0.58 0.77 0.61 0.88 1.17 1.27 
14 0.81 1.08 1.10 0.58 0.77 0.61 1.04 1.39 1.72 
15 0.81 1.08 1.10 0.74 0.99 0.94 1.22 1.62 2.27 
16 0.95 1.27 1.47 0.87 1.15 1.24 1.22 1.62 2.27 
17 0.95 1.27 1.47 0.87 1.15 1.24 1.22 1.62 2.27 
18 0.95 1.27 1.47 1.01 1.35 1.64 1.43 1.91 3.03 
19 1.08 1.45 1.85 1.51 2.02 3.34 1.63 2.17 3.80 
20 1.35 1.80 2.73 1.77 2.37 4.43 2.40 3.21 7.62 

Average 0.72 0.96 0.95 0.65 0.86 0.91 1.04 1.38 1.87 
Std Dev 0.24 0.31 0.59 0.40 0.53 1.11 0.41 0.54 1.56 
Note:  Using Normal(400,5) distribution with Sinit = 395 and N = 12 specimens. 
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Table 9.  Comparison of normalized standard deviations using Dixon-Mood, 
Braam-van der Zwaag, and the proposed correction for data from Table 5. 

Run 
Dixon-
Mood 
(σDM) 

Braam-van 
der Zwaag 

(σBZ) 

Proposed 
Correction 

(σPC) 
1 0.53 0.18 0.51 
2 0.53 0.18 0.51 
3 0.53 0.18 0.51 
4 0.63 0.34 0.65 
5 0.63 0.34 0.65 
6 0.63 0.34 0.65 
7 0.69 0.46 0.75 
8 0.71 0.48 0.78 
9 0.76 0.56 0.86 
10 0.77 0.58 0.87 
11 0.77 0.58 0.87 
12 0.84 0.72 0.99 
13 0.93 0.88 1.14 
14 1.08 1.22 1.44 
15 1.13 1.30 1.52 
16 1.17 1.40 1.60 
17 1.36 1.86 1.99 
18 1.41 1.96 2.10 
19 1.49 2.18 2.27 
20 1.73 2.88 2.83 

Average 0.92 0.93 1.17 
Std Dev 0.36 0.77 0.67 

 

Bootstrapping to Reduce Standard Deviation Scatter 

Obviously, one of the biggest problems inherent in small-sample testing is that 

statistical scatter can greatly impact results.  However, it has been shown that the Braam-

van der Zwaag, Svensson-Lorén, and proposed corrections all increase the scatter in σDM 

estimates.  The bootstrapping method (introduced in Chapter II) was investigated as a 

possible means to reduce this variance.  The bootstrap is a data-based simulation which 

utilizes multiple random draws from real test data to improve statistical inferences about 

the underlying population [31].  Essentially, the bootstrap method can be summed up by 

the following conjecture:  Assuming the test data collected accurately represents the true 

distribution, what other results could have been obtained if the test were repeated? 
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The bootstrap algorithm for the staircase application is based on the associated 

probabilities of failure computed using the number of survivals and failures at each stress 

level (i.e., P-S data).  Using these data, simulated staircase tests can be generated 

numerically using the same starting stress, step size, and number of specimens.  For the 

first specimen, a random number is drawn and compared to the probability of failure 

associated with the initial stress level.  The stress level is increased or decreased 

depending on the result of this draw (if the random number is less than the probability of 

failure, the result is considered a failure, otherwise it is a survival).  Another random 

number is then drawn for the second specimen and compared to the probability of failure 

for its associated stress level, with the stress level increased or decreased based on this 

comparison, and the process is repeated until all specimens are used.  Note that test data 

must be bounded by both P(failure) = 0 and P(failure) = 1 stress levels or the staircase 

may walk to a stress level where no data exists.  Through this algorithm, a set of “virtual” 

staircase tests is generated for the one “real” staircase test.  For each virtual staircase, the 

Dixon-Mood method can be applied to provide a standard deviation estimate.  The result 

is a distribution of standard deviation estimates.  Lastly, the revised point estimate can 

then be taken as the mean of this distribution, or another statistic such as the median or 

other percentile point.  The staircase simulation was modified to accommodate this 

bootstrapping algorithm by simulating a “real” staircase using an assumed underlying 

fatigue strength distribution, and then using the P-S data from this simulated staircase to 

bootstrap additional staircases from which a distribution of standard deviation estimates 

can be analyzed.  Simulation code is contained in Appendix D. 

The Bootstrap and the Dixon-Mood Estimate 

The first phase of the bootstrap investigation addressed the effects of the bootstrap 

on Dixon-Mood estimation.  Four different scenarios were considered:  (1) 120 staircases 

with N = 15 and s = 1.5σ, (2) 50 staircases with N = 12 and s = 1.0σ, (3) 100 staircases 

with N = 8 and s = 1.7σ, and (4) 50 staircases with N = 20 and s = 1.7σ.  These four 

scenarios were chosen as they provided a range in number of specimens (8 to 20) and 

they used larger step sizes as the parameter investigation recommended (1.0σ to 1.7σ).  

The number of staircases for each scenario varied in order to ensure an adequate cross-

section of standard deviation estimates resulted (7 to 10 distinct values, except for the 
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case with N = 8 in which only three unique distinct results occurred).  For each of these 

320 staircases, the Dixon-Mood standard deviation estimate was calculated.  P-S data for 

each staircase were then used to generate 5000 bootstrap iterations, each resulting in a 

Dixon-Mood standard deviation estimate.  A revised estimate was calculated as the mean 

standard deviation from the 5000 estimates for each staircase, designated as B
DMσ . 

For the first scenario (N = 15 and s = 1.5σ), the 120 staircases resulted in 8 unique 

standard deviation estimates (normalized by σ).  Thus, the data can be grouped by Dixon-

Mood estimate into 8 bins, as shown in Table 10.  For the staircases in each bin, a B
DMσ  

value was calculated.  For example, 5 of the 120 staircases resulted in a σDM value of 

2.05σ (the 3rd row from the bottom in Table 10), which resulted in B
DMσ  values of 1.48σ, 

1.48σ, 1.49σ, 1.49σ, and 1.56σ, for a mean of 1.50σ.  The data from this table are 

displayed graphically in Figure 30, where group numbers refer to the bins of data with the 

same σDM result, and expected value for the standard deviation estimate is taken from 

Figure 25.  Data for the other three scenarios are shown in the following figures. 

Table 10.  Bootstrap data for N = 15 and s = 1.5σ.  

Dixon-Mood  
Std Dev (/σ) 

Outcome 
Frequency 

Mean 
Bootstrap 
Std Dev 

Min 
Bootstrap 
Std Dev 

Max 
Bootstrap 
Std Dev 

0.80 75 0.80 0.80 0.94 
1.06 11 1.01 0.97 1.12 
1.26 13 1.10 1.08 1.11 
1.36 9 1.21 1.14 1.33 
1.46 5 1.20 1.18 1.28 
2.05 5 1.50 1.48 1.56 
2.45 1 1.86 1.86 1.86 
2.65 1 1.76 1.76 1.76 

 

Based on the data from these figures, it appears that the bootstrap algorithm has 

the satisfying effect of reducing errors due to overly large standard deviation estimates.  

In fact, this is exactly what the bootstrap is doing in that it smoothes out the statistically 

unlikely results by performing the many virtual replications using the P-S data.  Using 

this method, the B
DMσ  value is closer to the expected value of σDM, or E(σDM), than 

individual σDM estimates—nearly every one of the 320 σDM estimates from the four 
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scenarios was closer (or as close) to its expected value after bootstrapping.  Figure 34 

shows the distribution of standard deviation estimates for the second scenario.  The 

bootstrap’s ability to reduce statistical scatter of Dixon-Mood estimates is clearly evident. 
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Figure 30.  Bootstrap results sorted by Dixon-Mood standard deviation for 120 
staircases with N = 15 and s = 1.5σ. 
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Figure 31.  Bootstrap results sorted by Dixon-Mood standard deviation for 50 
staircases with N = 12 and s = 1.0σ. 
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Figure 32.  Bootstrap results sorted by Dixon-Mood standard deviation for 100 
staircases with N = 8 and s = 1.7σ. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

S
td

 D
ev

 E
st

im
at

e 
(/s

ig
m

a)

DM Statistics Alone

With Bootstrapping

Expected Value

 

Figure 33.  Bootstrap results sorted by Dixon-Mood standard deviation for 50 
staircases with N = 20 and s = 1.7σ. 
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Figure 34.  Frequency histograms for Dixon-Mood standard deviation and 
bootstrapped standard deviation for 50 staircases with N = 12 and s = 1.0σ. 

One of the remarkable outcomes of the bootstrap analysis is that it is actually 

possible to get better standard deviation estimates with smaller sample sizes than with 

larger ones in some cases, assuming a step size with little bias is used.  The data from the 

two scenarios using s = 1.7σ support this conclusion—recall that for uncorrected 

estimates, this step size is generally unbiased.  For the N = 20 case, the 50 σDM values 

ranged from 0.90−1.73σ.  For the N = 8 case, the 100 σDM values ranged from 

0.90−1.97σ.  Thus, without the use of bootstrapping, the larger sample size produced 

better estimates on average, as would be expected.  But with bootstrapping, the 20-

specimen results ranged from 0.90−1.46σ, which is less of an improvement than the 

0.90−1.25σ range of the 8-specimen bootstrapped data.  It seems logical that this result is 

due to the fact that larger-specimen tests may result in more stress levels, which tends to 

increase standard deviation estimates.  Thus, when there is little bias or positive bias 

(expected value under the test conditions is greater than the true value), using a smaller-

sample test with bootstrapping may yield better results than a test with more specimens.  

However, if testing under negative bias conditions, E(σDM) < σ, the smaller-specimen test 

would on average yield worse results than a larger-specimen test.  One must keep in mind 

that the bootstrap does not drive the standard deviation estimate towards the true value, 

but rather drives it towards the expected value given the test parameters.  This effect is 

clearly shown in Figure 31 for groups 3−7, where bootstrapping drives the standard 

deviation estimate towards 0.75σ rather than 1σ.  Note that Figure 25 shows that the 

expected value of σDM is 0.75σ for N = 12 and s = 1σ. 
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The bootstrap provides the first real tool to reduce the scatter inherent in the 

Dixon-Mood standard deviation method.  It has been shown to adjust Dixon-Mood 

estimates towards their expected value.  Thus, if one tests in an unbiased region, such as 

the s = 1.7σ region, then the bootstrap should drive Dixon-Mood estimates towards the 

true standard deviation.  But, can a correction such as the Svensson-Lorén correction be 

used in conjunction with the bootstrap to alleviate bias and still provide less overall 

scatter?  This question is addressed in the next section. 

Use of Bootstrapping in Conjunction with Bias Correction 

In this section, the use of bootstrapping is investigated in conjunction with the 

Svensson-Lorén correction (σSL) and the proposed correction (σPC).  The bootstrap was 

performed in the same manner as in the last section, except that the two corrections were 

made to each of the Dixon-Mood estimates during the bootstrap, thus leading to three 

bootstrap distributions—one each for Dixon-Mood, Svensson-Lorén, and the proposed 

correction.  The primary scenario of interest was the N = 15 specimen case with s = 1σ  ± 

0.25σ, since this seems to be a reasonable small-sample test scenario.  It was determined 

that the number of stress levels used in the test (i.e., resulting from the test protocol) 

plays a critical role in determining the effectiveness of bootstrapping in general, as well 

as in selecting the specific statistic for use from the bootstrap distribution.  A 

considerable number of simulations were run to investigate various bootstrap distribution 

statistics in order to determine a general set of rules to recommend for analysis of 

staircase data using the bootstrap method.   

For the N = 15 specimen case using s = 1σ, it was found that bootstrapping had no 

effect when the staircase only included 3 stress levels.  For every case, the σDM estimate 

was 0.53σ, leading to estimates of σSL = 0.66σ and σPC = 0.50σ.  Bootstrapping did not 

change these results.  This situation occurs for other sample sizes as well.  Like Rabb 

alluded to with his acceptability criteria, a 3-level staircase generally provides too little 

data to make any useful standard deviation estimates [73].  However, in the absence of 

additional data, the σSL estimate can be used as an estimate for σ.  For 4-level staircases, 

the bootstrap had a considerable effect.  A sample of 15 runs each using N =15 and s = 1σ  
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± 0.25σ, led to the data shown in Table 11.  Observations from these data include the 

following: 

• Without the bootstrap, Svensson-Lorén and the proposed correction have less bias 
than Dixon-Mood, although more scatter. 

• Estimates based on bootstrap data have less scatter than the corresponding 
estimates without bootstrapping, and are also less biased in most cases. 

• Basing the bootstrap estimate on the average of the 60th and 65th percentiles of the 
bootstrap distribution generally reduces bias compared to use of the bootstrap 
distribution mean or median for steps on the order of 1σ or less.  This finding was 
shown to generally be true over a range of different sample sizes.  For 5-level 
tests, however, the bootstrap based on the mean appears more accurate. 

• The Svensson-Lorén estimate using the average of the 60th and 65th percentiles 
( B

SLσ~ ) was better than or equal to the non-bootstrapped Svensson-Lorén estimate 
in 100% of the cases at s = 1σ, 47% of the cases at s = 0.75σ, and 87% of the 
cases at s = 1.25σ.  Likewise, the proposed correction with bootstrapping using 
these percentiles ( B

PCσ~ ) was better than or equal to the correction without 
bootstrapping in 87% (1σ), 73% (0.75σ), and 87% (1.25σ) of the cases. 

• The B
PCσ~  estimate is better than B

SLσ~  in 80% of the cases when s = 1.25σ, but just 
20% of the cases at 1σ, and 24% of the cases at 0.75σ.  Thus, it appears that the 
proposed correction is superior when larger steps are used, but slightly worse than 
Svensson-Lorén at smaller steps. 

Table 11.  Bootstrap data with bias correction for 4-level staircases using N = 15.  

s = 1σ s = 0.75σ s = 1.25σ Statistic (/σ) Avg StDev Avg StDev Avg StDev
Dixon-Mood (no bootstrap), σDM 0.83 0.13 0.67 0.19 1.02 0.20 
Svensson-Lorén (no bootstrap), σSL 1.04 0.16 0.84 0.24 1.28 0.25 
Proposed correction (no bootstrap), σPC 1.01 0.23 0.87 0.37 1.25 0.40 
Svensson-Lorén correction based on mean 
of bootstrap distribution, B

SLσ  0.92 0.09 0.71 0.13 1.14 0.13 

Svensson-Lorén correction based on 
average of the 60th and 65th percentiles of 
bootstrap distribution, B

SLσ~  
1.00 0.11 0.76 0.17 1.23 0.13 

Proposed correction based on mean of 
bootstrap distribution, B

PCσ  0.87 0.14 0.69 0.20 1.07 0.20 

Proposed correction based on average of 
the 60th and 65th percentiles of bootstrap 
distribution, B

PCσ~  
0.96 0.17 0.74 0.26 1.16 0.20 
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Based on the results of this section, and the detailed results shown in Appendix G, 

the following rules are recommended for small-sample tests: 

• If the test results in three stress levels, bootstrapping is generally ineffective and 
the non-bootstrapped σSL estimate may be used to estimate σ.  However, any 
standard deviation estimate based on 3-level staircase data should be used with 
caution and additional testing is recommended. 

• If the test results in four stress levels, the 60th- and 65th-percentile points of the 
bootstrap distribution for σPC (i.e., B

PCσ~ ) should be averaged to estimate σ for 
larger step sizes.  If the step size is known to be on the order of standard deviation 
or smaller, then the 60th- and 65th-percentile points of the bootstrap distribution 
for σSL (i.e., B

SLσ~ ) should be averaged to estimate σ . 

• If the test results in five or more stress levels, then the mean of the Svensson-
Lorén bootstrap distribution for (i.e., B

SLσ ) should be used to estimate σ . 

To demonstrate the utility of these rules, they were applied to the scenarios shown 

in Table 12 using a random sample of 5 staircase tests for each scenario.  The normalized 

standard deviation estimates for each run are shown in Table 12. 

Table 12.  Validation runs for proposed bootstrapping rules.  

Scenario 
Sample 

Size 
(N) 

Step 
Size 
(/σ) 

Run 1 Run 2 Run 3 Run 4 Run 5 

A 8 1 0.85 
(0.53) 

0.85 
(0.53)

0.85 
(0.53)

0.85 
(0.53) 

0.85 
(1.16) 

B 10 1 0.76 
(0.53) 

0.76 
(0.53)

0.99 
(0.95)

0.76 
(0.53) 

0.76 
(0.53) 

C 12 1 1.17 
(0.95) 

0.71 
(0.53)

0.71 
(0.53)

0.71 
(0.59) 

0.93 
(0.81) 

D 15 0.5 0.55 
(0.45) 

0.66 
(0.68)

0.33 
(0.27)

1.06 
(0.95) 

0.57 
(0.45) 

F 20 0.75 1.15 
(3.76) 

0.67 
(0.58)

0.95 
(0.96)

1.38 
(1.51) 

1.43 
(1.42) 

G 20 1.25 0.78 
(0.66) 

2.08 
(2.19)

0.78 
(0.66)

1.12 
(0.97) 

0.78 
(0.66) 

H 30 1 0.88 
(0.80) 

0.88 
(0.80)

1.09 
(1.06)

1.72 
(1.73) 

0.95 
(0.87) 

For each run, the normalized standard deviation estimate using the 
bootstrap rules is given above, and the Dixon-Mood estimate is below. 
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The combination of bias correction and bootstrapping provides an effective “one-

two punch” for evaluating staircase standard deviation by reducing both bias and scatter 

and providing a measure of protection against extreme results, allowing relatively 

efficient estimation even at small sample sizes using the Dixon-Mood analysis method. 

Iteration to Improve Standard Deviation Estimates 

Another alternative to reducing dependence on initial estimates for standard 

deviation is the use of iteration.  An iterative staircase algorithm would perform a 

staircase test at a given step size based on the initial assumption of true standard 

deviation (σ).  An estimate for standard deviation would be calculated from the staircase 

data using the methods previously discussed.  A second staircase could then be performed 

using the result of the first staircase as an initial estimate for standard deviation.  This 

process could be repeated a number of times.  For example, suppose that the standard 

deviation of the fatigue strength at a specified number of cycles for a material was 

initially estimated to be 15 MPa.  Rather than perform a 30-specimen staircase test at a 

fixed step size (e.g., 1.5σ), one could perform a 10-specimen staircase at 1.5σ0, where σ0 

represents the initial estimate for standard deviation.  This staircase would result in an 

estimate for standard deviation given by σ1.  Another 10-specimen staircase could be run 

at a step of 1.5σ1, resulting in an estimate denoted by σ2.  Finally, a third staircase would 

be run at a step of 1.5σ2, with the resulting standard deviation estimate denoted by σ̂ .  

The question is whether this iterative means would provide a better answer than just 

testing all 30 specimens in one staircase.  Would such an approach reduce the 

dependence on initial standard deviation estimates?  If so, this could be a useful approach 

for staircase testing of materials with very little existing data in the regime of interest. 

The first issue for such a method is to determine whether an iterative approach 

would converge to the true fatigue strength mean and the true fatigue strength standard 

deviation in the limit of an infinite number of iterations.  The staircase simulation code 

was modified to handle such an iterative algorithm (as shown in Appendix D) in order to 

address this issue.  Iterative staircases were run for a sample size fixed at 8 specimens per 

staircase subtest.  This sample size would allow several iterations while still maintaining 

a reasonably small sample size (e.g., three iterations would require 24 samples).  In 
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addition, the sample size is not so small that staircases almost always result in 3-level 

results.  The 8-specimen staircases were iterated using a step size of 1.7σ  as this step size 

provides generally unbiased results using the Dixon-Mood method, as previously shown.  

The starting stress was slightly lower than the true fatigue strength mean, in order to help 

mitigate standard deviation bias, which was also shown previously.  The initial standard 

deviation estimate ranged from too low (0.5x) to far too large (3x).  Each scenario was 

simulated for 1000 replications. 

The results of this simulation work showed that the iteration scheme converged in 

an average sense.  Consider the convergence results for an initial standard deviation 

estimate significantly too high (3x).  Figure 35 shows that the mean of the 1000 fatigue 

strength means is quite close to the true value after just a couple iterations, and remains 

close to the true value as the number of iterations increases.  This result is of course of no 

surprise as the Dixon-Mood estimate for mean fatigue strength has been shown to be 

extremely efficient and accurate.  Figure 36 shows the mean of the 1000 standard 

deviation estimates as a function of iterations.  Although the Dixon-Mood analysis for 

standard deviation (in its original form) is biased, the iteration scheme results in 

convergence of the mean of the estimates to the true value.   
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Figure 35.  Convergence of mean of fatigue strength mean estimates using Dixon-
Mood statistics for 8-specimen subtests with 1.7σ step, initial standard deviation 
estimate of 15 and initial mean estimate of 390 for true underlying distribution 

Normal(μ = 400, σ = 5). 
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Figure 36.  Convergence of mean of fatigue strength standard deviation estimates 
using Dixon-Mood statistics for 8-specimen subtests with 1.7σ step, initial standard 

deviation estimate of 15 and initial mean estimate of 390 for true underlying 
distribution Normal(μ = 400, σ = 5). 

So far, it appears that the iteration algorithm produces convergence to true fatigue 

strength parameters.  However, in the case of the standard deviation estimate, this result 

was shown to only be the case in an average sense, but not on an individual basis for any 

particular replication of staircase iterations.  Figure 37 shows the distribution of standard 

deviation estimates after 50 iterations of 8-specimen subtests with step 1.74σ for both a 

low initial estimate (0.5x) and a high initial estimate (2x) for true standard deviation.  

Note that for both the low and high cases, the mean value for standard deviation was 

quite close to the true standard deviation (5.2 in this case, or 1.04σ).  However, the figure 

shows that the scatter in the standard deviation estimates is quite large.  For both the low 

and high cases (in terms of initial standard deviation estimate), the standard deviation in 

the Dixon-Mood standard deviation estimates was 0.42σ.  This is an extremely large 

scatter in standard deviation for a test using 400 (50x8) specimens.  If one were to just 

run a single 8-specimen test, the results from earlier simulation (see Figure 26) show that 

the scatter is approximately 0.23σ.  The use of iterated subtests actually produced much 

more scatter in results rather than performing a single staircase.  This result was apparent 

over a range of sample sizes and step sizes.   



 

 97 

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Std Dev Values

Fr
eq

ue
nc

y
390,2.5 (8) 1.74s

390,10 (8) 1.74s

 

Figure 37.  Distribution of standard deviation estimates using Dixon-Mood statistics 
after 50 iterations of 8-specimen subtests for both high and low initial estimates of 

standard deviation using step size 1.74σ. 

Thus, although the use of staircase iteration may allow convergence of standard 

deviation estimates to true values in an average sense, there is no guarantee that the 

results will converge on an individual basis.  Use of bias correction and bootstrapping in 

conjunction with iteration was attempted, but results generally did not improve as 

compared to cases in which a single staircase was used.  In short, if given the choice 

between a single staircase of N specimens with some initial standard deviation estimate 

or a series of back-to-back staircases of N/2 specimens each, it appears that the single 

staircase produces better results. 

Summary 

In this chapter, several important strides were made in the understanding and 

characterization of the staircase test as applied to fatigue strength testing.  The ability of 

the Dixon-Mood analysis method to accurately and efficiently characterize mean fatigue 

strength using very few specimens was demonstrated.  A comparison of the various 

methods (Brownlee et al, Dixon, and Little) of correcting for a string of failures or 

survivals at the beginning of the test was accomplished, and it was shown that the Little 
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method was generally a more robust and accurate technique.  A comparison of the very 

recent (1998-2003) research into improving fatigue strength standard deviation estimates 

using staircase testing was also completed, showing that these new methods were less 

than complete and did not fully characterize the bias and scatter inherent in standard 

deviation estimates based on staircase data.  An exhaustive simulation study was 

undertaken which was able to completely characterize this bias and scatter for a range of 

sample sizes (≥ 8) and step sizes (≥ 0.1σ).  Findings of interest included (1) use of an 

initial starting stress offset from the true fatigue strength mean slightly reduced standard 

deviation bias, and (2) use of larger step sizes in the 1.6−1.75σ range more significantly 

reduced this bias.  A non-linear correction to Dixon-Mood standard deviation was 

developed to further eliminate bias as a function of sample size and step size.  These bias 

reduction techniques tended to amplify scatter in results, however.  Use of a 

bootstrapping algorithm applied to the P-S data from a staircase test was shown to reduce 

this scatter and provide protection against “outlier” standard deviation estimates.  The use 

of iteration was also explored as a means to reduce the importance of initial standard 

deviation estimates.  This iterative staircase algorithm was shown to provide convergence 

to true fatigue strength parameters in an average sense, but not on an individual basis, and 

was thus shown to be ineffective. 

In the next chapter, an experimental validation of the proposed staircase 

methodology will be presented using Ti-6Al-4V tests conducted on a 20-kHz ultrasonic 

test machine.  The data from these tests will be analyzed using the results of this 

chapter—i.e, larger step sizes will be used, the non-linear bias correction formulation will 

be investigated, as well as the use of bootstrapping the results.  
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IV. USE OF THE MODIFIED STAIRCASE METHOD FOR TI-6AL-4V 
GIGACYCLE TEST DATA 

In this chapter, the staircase method is used to estimate the gigacycle fatigue strength 

distribution of Ti-6Al-4V specimens tested on a 20-kHz ultrasonic fatigue testing 

machine.  The objective is to demonstrate the use of larger step sizes and staircase 

bootstrapping for a real engineering problem.  Existing experimental data from AFRL’s 

HCF program were utilized, with additional tests requested to fill in a complete staircase.   

Introduction 

There is significant interest in the HCF community regarding the existence of 

internally-initiated fatigue cracks in the very high cycle regime.  As discussed in 

Chapter II, numerous researchers have identified this failure mechanism and proposed 

that two S-N curves actually exist for each material.  One curve is associated with the 

surface-initiated cracking mechanism.  The second curve is associated with internally-

initiated (subsurface) cracks, as shown by Figure 38.  Data from the National HCF S&T 

Program using conventional fatigue testing machines (up to 1000 Hz) do not reveal the 

presence of this internal cracking mechanism for tests up to 109 cycles conducted using 

Ti-6Al-4V under fully-reversed loading, although only two of the 37 data points at R = -1 

went beyond 108 cycles [4].   
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Figure 38.  Schematic of possible dual-phase S-N behavior. 
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The staircase testing of Morrissey and Nicholas [52] addressed this void in 

experimental results for Ti-6Al-4V data points beyond 108 cycles.  Their testing was 

meant to probe several issues:  (1) any frequency effect when testing at 20 kHz, (2) any 

subsurface initiations observed in the gigacycle regime, and (3) any effect due to cooling 

specimens during testing.  Their results showed that tests conducted using a 20-kHz 

ultrasonic fatigue testing machine matched up well with those observed using a 

conventional 60-Hz machine.  There was no observable frequency effect for Ti-6Al-4V 

specimens under fully-reversed loading using the ultrasonic apparatus.  As for subsurface 

initiation, no such phenomenon was observed in the 28 specimens tested, with the 

maximum fatigue failure occurring at 6.0 x 108 cycles [4].  Lastly, the thermal response 

of the material when tested at room temperature indicated that temperatures remained low 

enough such that specimen heating during loading had no significant effect on material 

behavior.  Figure 39 shows a thermal image generated during their testing for the 

investigation of thermal response. 
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Figure 39.  Thermal image of Ti-6Al-4V gage section during 200 MPa test using the 
20-kHz ultrasonic fatigue machine (provided by AFRL/MLLM). 
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The work of Morrissey and Nicholas provided two sets of 10-specimen staircase 

data, each with a runout limit of 109 cycles, and one set of 8-specimen staircase data with 

a runout limit of 108 cycles [4; 52].  The objective of this chapter was to use the 109 

staircase data to validate the simulation work of Chapter III.  Ideally, one would prefer to 

perform a validation experiment with the freedom to choose the starting stress, step size, 

and the number of specimens.  But with existing staircase data already provided, it was 

decided that it would be advantageous to use these existing data and perform minimal 

additional tests if needed.   

Experimental Background 

Before discussing the data analysis of the Ti-6Al-4V staircase tests, this section 

presents the necessary background related to the laboratory experiments. 

Material Processing and Properties 

The material used for the analysis in this chapter is a titanium alloy, specifically 

Ti-6Al-4V, which is a common aerospace engineering material, often used in turbine 

engine components.  Much of the fatigue testing conducted by the National HCF S&T 

Program used this particular material [3].  The details of the material processing are 

provided in a number of papers [48; 52-53], but will be summarized here from Morrissey 

and Nicholas [52].  The material was produced in accordance with AMS 4928, being 

forged into flat plates of dimensions 406 mm x 150 mm x 20 mm (approximately).  The 

forged plates were then solution heat treated at 932°C for 1 hour, vacuum annealed at 

705°C for 2 hours, and then argon fan cooled.  The resulting microstructure is of two-

phase design, with approximately 60% by volume consisting of the primary α phase 

(hexagonally close-packed lattice, or h.c.p.), with the remaining volume consisting of 

transformed β phase (body-centered cubic lattice, or b.c.c.).  This type of Ti-6Al-4V 

microstructure is often called “two-phase,” “dual phase,” “duplex phase,” “bimodal,” or 

simply “α-β.”  The material processed in this manner is known to metallurgists as 

solution treated and overaged (STOA).  Average grain size was approximately 15-20 μm.  

Longitudinal tensile properties (along the loading axis) at room temperature in an 

ambient environment were E = 116 GPa (Young’s modulus), σy = 930 MPa (yield 

strength), and σUTS = 968 MPa (ultimate tensile stress).   
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Ultrasonic Fatigue Testing Machine 

The original design of an ultrasonic fatigue testing apparatus goes back to the 

work of Mason in the late 1940s and 1950s [49].  The principle of operation is based on a 

transducer which converts input signals at a given frequency into a mechanical 

displacement at the same frequency [16; 52].  This displacement is mechanically 

amplified and vibrates the specimen at its resonant frequency.  The vibration of the 

specimen at its resonant frequency produces the alternating strain field which leads to an 

alternating stress field in the gage section of the specimen.  In this manner, a specimen is 

fatigued until failure or the specified number of cycles has been reached. 

The ultrasonic fatigue testing machine used for this testing was the property of 

AFRL/MLLM, and used a piezoelectric transducer to convert electronic signals generated 

by a power supply at a frequency of 20 kHz (± 500 Hz) into displacements [52].  The 

power supply is automatically tuned to the natural frequency of the system, and when the 

frequency falls outside the 19.5-20.5 kHz range, the system will automatically shut off.  

Branson Ultrasonics Corporation is the manufacturer of the power supply and transducer, 

which were originally designed for ultrasonic welding applications [52].  A titanium 

booster and horn are attached to the transducer.  These components are designed to 

amplify the mechanical displacement provided by the transducer.  The horn is attached to 

the specimen, which has a threaded end which screws into a female receptor in the horn.  

Specimens must be designed to have an axial natural frequency of 20 kHz in order to 

achieve the resonant condition.   

All tests for this study were conducted under fully-reversed loading conditions so 

that mean loads were not applied.  Thus, the end of the specimen not connected to the 

amplifying horn was a free surface.  An eddy current sensor was mounted opposite this 

free surface and provided a means of measuring displacement of the specimen end during 

its load cycle.  At the beginning of each test, a resistance strain gage was mounted on the 

gage section and the free end displacement as read by the eddy current sensor was 

calibrated with the strain values obtained from the strain gage [52].  Once calibrated, a 

control loop is used by the machine to ensure that gage section strains are controlled by 

measuring the calibrated eddy current sensor data.  Knowing the elastic properties of the 

specimen, the gage section strain can be converted to stress, and thus the stress amplitude 
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of the fatigue test is controlled.  Strain gages are not mounted throughout testing because 

they are not durable at such high frequencies and quickly fall off.  Thus the eddy current 

sensor calibration is crucial to providing accurate stress amplitude data.  Test control 

software is displayed on a computer and monitors and records displacement data and 

controls the power supply.  Fatigue failure is detected by the change in natural frequency, 

causing the system to shut down.  Figure 40 shows the ultrasonic fatigue testing setup as 

used by AFRL/MLLM. 
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Figure 40.  Schematic drawing and photograph of the 20-kHz ultrasonic fatigue 
testing apparatus (provided by AFRL/MLLM). 

Test Specimens 

The specimens designed for this experiment used a cylindrical dog-bone geometry 

with a gage section diameter of 4 mm and an outer end diameter of 12.7 mm.  The gage 
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section had a length of 6 mm.  Figure 41 shows the details of the specimen geometry 

along with a photograph of the specimen mounted to the horn. 

(All dimensions in mm)(All dimensions in mm)

 

Figure 41.  Specimen geometry (provided by AFRL/MLLM). 

All specimens were prepared using a low stress grinding technique [52].  Of the 

28 specimens initially tested, 8 were tested as received after machining and 20 were 

stress relief annealed (SRA) prior to testing.  As the name implies, the SRA method is an 

annealing procedure which alleviates residual stresses at the surface due to machining.  

For the 20 SRA specimens, half were tested with two air jets mounted on opposite sides 

of the specimen blowing 0°C air, and half were tested without cooling. 

Experimental Data 

The tests were conducted by AFRL/MLLM in three separate staircases, with an 8-

specimen staircase for the as-received specimens, and two 10-specimen staircases for the 

SRA specimens with cooling and without cooling, respectively.  Each staircase used a 10 
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MPa step size.  Initially, staircases were run up to a limit of 108 cycles [52], however the 

SRA specimens which ran out at 108 cycles were then retested up to 109 cycles [4].  The 

data for these tests are tabulated in Appendix A, Table 25 through Table 27.  The 28 data 

points from these 20-kHz tests are shown in Figure 42 along with the previous HCF S&T 

data collected from lower-frequency test machines.  This figure shows that there is no 

observable frequency effect.  Surface-initiated cracks were observed for each specimen 

resulting in a fatigue failure.  No internally-initiated failures were observed. 
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Figure 42.  Fatigue data for α-β Ti-6Al-4V at both conventional and 20 kHz 
frequencies at R = -1. 

For these staircases, mean fatigue strength at 108 cycles was lower for the as-

received specimens (392 MPa) when compared to the SRA specimens (403-415 MPa), as 

reported by Morrissey and Nicholas [52].  This result is unexpected (and perhaps due to 

small sample variance) since residual surface stresses should raise, not lower, fatigue 

strength when surface initiation is the fatigue mechanism.  Since the as-received 

specimens were run up to just 108 cycles, only the SRA data were used for an analysis of 

fatigue strength at 109 cycles.  The data points from the 20 SRA specimens are plotted in 
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an S-N format in Figure 43.  Use of the SRA-only data also allowed the data to be 

combined into one “super staircase” permitting analysis as described in Chapter III. 
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Figure 43.  Initial staircase data for 109-limited tests of α-β Ti-6Al-4V under R = -1 
loading using the 20 stress-relief annealed (SRA) specimens. 

Reworking the Data 

In order for the data from the Morrissey and Nicholas tests to be used to provide a 

validation example of the staircase procedures developed in Chapter III, the data must 

conform to the staircase protocol.  Since the data come from separate staircase tests, they 

must be reorganized to fit into a single staircase format.  In order to make a single 

staircase out of the data, some changes were necessary.  Note that if a specimen fails at a 

given stress, it would also have failed at a higher stress.  Conversely, if a specimen 

survives at a given stress, it would also have survived at a lower stress.  These statements 

lead to the following rules which were used to transform staircase data from one stress 

level to another stress level: 
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• A real failure at stress level X is also a failure at stress level Y if Y > X. 

• A real survival at stress level X is also a survival at stress level Y if Y < X. 

Using these rules, the 20 staircase data points can be transformed from a 10 MPa 

step to a 20 MPa step, as shown in Table 13.  These transformed staircase data almost 

make a complete staircase, as shown by Figure 44.  In order to be a complete staircase, 

three additional data points are needed at 380 MPa, and they must be runouts.  If these 

data points were available, then all 20 points from the SRA staircases may be utilized.  

Three additional tests were thus conducted at 380 MPa.  Each of these tests did, in fact, 

result in a runout at 109 cycles (as shown in Table 28 in Appendix A).  Thus, a complete 

23-specimen staircase with step size 20 MPa and starting stress 400 MPa and four 

resulting stress levels was available for analysis using the three additional tests.  

Table 13.  Transformation of real staircase data. 

Real Results Transformed Results Staircase 
Data Set Specimen Stress (MPa) Result Stress (MPa) Result 

1 400 Survival 400 Survival 
2 410 Survival 400 Survival 
3 420 Failure 420 Failure 
4 410 Survival 400 Survival 
5 420 Failure 420 Failure 
6 410 Failure 420 Failure 
7 400 Survival 400 Survival 
8 410 Survival 400 Survival 
9 420 Survival 420 Survival 

SRA with 
no cooling 

10 430 Failure 440 Failure 
11 410 Failure 420 Failure 
12 400 Failure 400 Failure 
13 410 Failure 420 Failure 
14 400 Failure 400 Failure 
15 390 Failure 400 Failure 
16 400 Survival 400 Survival 
17 410 Failure 420 Failure 
18 400 Survival 400 Survival 
19 410 Failure 420 Failure 

SRA with 
cooling 

20 400 Failure 400 Failure 
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Figure 44.  Ti-6Al-4V data transformed into a single staircase. 

Staircase Analysis 

The staircase analysis could now be accomplished on a complete set of real test 

data.  The first step of the analysis was to apply the Dixon-Mood equations in order to 

estimate the mean fatigue strength and its standard deviation.  A spreadsheet-based 

staircase analysis tool built using the Dixon-Mood equations was used to calculate the 

mean fatigue strength and standard deviation of fatigue strength at 109 cycles.  Figure 45 

shows the calculations and results from the Dixon-Mood analysis.  Since the first two 

trials are of opposite sign, no adjustment to the Dixon-Mood estimate for mean fatigue 

strength is needed.  Thus, the mean fatigue strength for the Ti-6Al-4V data based on 

these 23 specimens is 406.4 MPa.  The Dixon-Mood estimates for mean fatigue strength 

are generally very accurate so long as assumptions are not grossly violated. 
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Staircase test parameters
Stress 0 400 Summation terms for Dixon-Mood equations
Step size 20 Number failed 12 Level Count Count_S Count_F m_i i*m_i (i^2)*m_i

Test to be based on Survivals 0 3 3 0 3 0 0
Specimen Staircase Result Formula Stress Stress Stress (i = 0) 380 1 11 7 4 7 7 7

# Stress (S/F) Counter Values Levels StDev condition 0.33 2 8 1 7 1 2 4
1 400 S 1 400 1 Mean fatigue limit 406.36 3 1 0 1 0 0 0
2 420 F 1 N/A 2 StDev fatigue limit 11.65 4 0 0 0 0 0 0
3 400 S 1 400 1 * Statistics using Dixon-Mood 5 0 0 0 0 0 0
4 420 F 1 N/A 2 6 0 0 0 0 0 0
5 400 S 1 400 1 7 0 0 0 0 0 0
6 420 S 1 420 2 8 0 0 0 0 0 0
7 440 F 1 N/A 3 Sum 23 11 12 11 9 11
8 420 F 1 N/A 2
9 400 S 1 400 1
10 420 F 1 N/A 2
11 400 S 1 400 1
12 420 F 1 N/A 2
13 400 S 1 400 1
14 420 F 1 N/A 2
15 400 S 1 400 1
16 420 F 1 N/A 2
17 400 F 1 N/A 1
18 380 S 1 380 0
19 400 F 1 N/A 1
20 380 S 1 380 0
21 400 F 1 N/A 1
22 380 S 1 380 0
23 400 F 1 N/A 1

Staircase test statistics

 
Figure 45.  Dixon-Mood calculations for 23-specimen Ti-6Al-4V staircase data. 

Assumption of Normality 

Before going onto the standard deviation analysis, the assumption of normality 

should at least be checked to ensure that gross deviation is not observed.  In order to 

assess the shape of the fatigue strength distribution (which is an unknown), several 

analysis techniques may be employed that go beyond staircase data analysis.  First, using 

the data from Figure 42, a bilinear curve fit model (in stress-log cycle coordinates) was 

developed using a least squares approach.  The least squares approach is used to find a 

linear curve fit to a set of x-y data, thus providing the best line of the form y = ax + b, 

where a and b are constants based on the sample points.  The solution to the least squares 

linear curve fit is a classic mathematics problem and is given by: 
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The data from Figure 42 were divided into two sets, one corresponding to the 

sloped region at lower fatigue lives (< 2 x 105 cycles) and one corresponding to the 

relatively flat region for fatigue lives greater than 2 x 105 cycles.  Only failure points 

were included as x-y data.  For this scenario, x corresponded to log(N) and y 

corresponded to S.  With the two sets of S-N data, the best fits for each region of the S-N 

curve were calculated as: 

 region) (sloped  7.1588)log(6.226 +−= NS  N ≤ 2 x 105  (36) 

 region) l(horizonta  7.433)log(0.4 +−= NS  N > 2 x 105  (37) 

These linear fits were then plotted over the Ti-6Al-4V S-N data points as shown in 

Figure 46.  The data points in Figure 46 and Figure 42 are identical except for the 

addition of the three runouts at 380 MPa. 
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Figure 46.  Bilinear curve fit using least squares for Ti-6Al-4V data. 

The next step was to measure the residuals from the failure points to the curve fit.  

These residuals thus provide a quantification of the scatter about the mean S-N curve.  As 

suggested by Hanaki et al [36], the fatigue data may be transformed into a “normalized 

fatigue strength” which groups the data with differing fatigue life into a single 
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distribution, thus allowing a means of estimating the fatigue strength distribution with 

much less data than if only points with similar fatigue lives were used.  Of course, for this 

approach to be applicable, no discernible trend in fatigue strength scatter as a function of 

fatigue life should be apparent.  Looking at Figure 46, the assumption of constant fatigue 

strength scatter about the mean fatigue strength line is indeed reasonable. 

The residual errors in the fatigue-limit regime (> 2 x 105 cycles) were analyzed 

using distribution-fitting software.  A histogram of the residuals is shown in Figure 47 

along with a normal and an extreme value distribution fit.  Clearly, there is some 

skewness in the data towards lower stress values and the extreme value distribution 

appears to represent the scatter in fatigue strength rather well.  Although the fatigue 

strength distribution appears to be non-normal based on Figure 47, the probability plot 

shown in Figure 48 is not so far from normality that the Dixon-Mood analysis cannot be 

used with caution.  Figure 49 shows the probability plot for data fitted with an extreme 

value distribution, which again appears to yield a good fit. 
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Figure 47.  Residuals in the HCF region for Ti-6Al-4V data at R = -1 for a 
horizontal fatigue limit. 
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Figure 48.  Probability plot for normal distribution fit of Ti-6Al-4V residuals. 
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Figure 49.  Probability plot for extreme value distribution fit of Ti-6Al-4V residuals. 

Standard Deviation Analysis 

The Dixon-Mood standard deviation estimate (shown in Figure 45) is 11.65 MPa.  

As discussed in Chapter III, the standard deviation estimate should be adjusted using 
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either the Svensson-Lorén or the proposed non-linear correction.  For the 23-specimen 

data, the standard deviation using the Svensson-Lorén correction is given by: 

 MPa 40.13 
323

2365.11
3
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To use the newly proposed non-linear correction for 23 specimens, the values for 

the constants used in Equation 3-18 can be interpolated from Table 7.  Interpolating 

between 20 and 30 specimens yields A = 1.0, B = 1.2, and m = 0.381, so that the proposed 

correction is calculated as: 
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Thus, the proposed correction is very close to the uncorrected Dixon-Mood 

standard deviation for this case.  If the 11.69 MPa estimate is considered close to the true 

standard deviation, then the 20 MPa interval corresponds to a 1.71σ step, which was 

earlier shown to be in the unbiased region for the Dixon-Mood standard deviation 

estimator.  Thus, a “good” Dixon-Mood standard deviation estimate may have resulted 

from using a step size that was appropriately large relative to the true standard deviation. 

Since the staircase data resulted in four stress levels, it is appropriate to use the 

bootstrapping algorithm to reduce any potential for an outlier standard deviation estimate.  

Recall that the average of the 60th- and 65th-percentiles of the bootstrapped distribution 

worked well for estimating the standard deviation for a 4-level staircase.  The bootstrap 

algorithm requires the P-S data from the staircase test as an input.  In this case, the P-S 

data can be read from Figure 44 and are summarized in Table 14. 

Table 14.  P-S data for the 23-specimen Ti-6Al-4V staircase. 

Stress Level Survivals Failures P(failure) 
380 3 0 0 
400 7 4 0.364 
420 1 7 0.875 
440 0 1 1 
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These P-S data were bootstrapped using the simulation-based algorithm discussed 

in Chapter III, with input parameters and output statistics shown in Figure 50.  The 

Svensson-Lorén bootstrapped percentiles were 13.40 MPa (60th) and 14.63 MPa (65th), 

for a mean of 14.02 MPa.  The proposed correction percentiles were 11.69 MPa (60th) 

and 13.20 MPa (65th), for a mean of 12.45 MPa.  Because the bootstrapped values are so 

close to the non-bootstrapped values, it suggests that these estimates are quite near their 

expected value.  The estimate based on the proposed correction should be used due to the 

large step, as discussed in Chapter III. 

initstress = 400;
step = 20;
n = 23;
Pstar = [0 0.363636 0.875 1];
Sstar = [380 400 420 440];

Bootstrap Input Bootstrap Output
DIXON-MOOD STD DEV
Bootstrap sigma mu = 12.4737
Bootstrap sigma 60 = 11.6503
Bootstrap sigma 65 = 12.7214
SVENSSON-LOREN CORRECTED STD DEV
Bootstrap sigma mu = 14.3447
Bootstrap sigma 60 = 13.3979
Bootstrap sigma 65 = 14.6296
POLLAK CORRECTED STD DEV
Bootstrap sigma mu = 12.9856
Bootstrap sigma 60 = 11.6893
Bootstrap sigma 65 = 13.1989
FATIGUE STRENGTH MEAN
Bootstrap mean = 404.8778

 

Figure 50.  Bootstrap input and output for the 23-specimen Ti-6Al-4V staircase. 

An additional means of validating the standard deviation estimates would be to 

calculate the standard deviation of the best normal distribution fitted to the fatigue 

strength residuals shown in Figure 47.  The standard deviation of this normal fit is 

calculated to be 13.38 MPa by the MATLAB dfittool command.  This value is very 

close to that determined by the modified staircase analysis.   

A final means of validating the standard deviation estimate would be to simulate a 

number of staircase tests using the same staircase settings (Sinit = 400 MPa, s = 20 MPa, 

and N = 23 specimens) as the Ti-6Al-4V staircase analysis, but using the calculated 

fatigue strength parameters as fatigue strength inputs (μ = 406.4 MPa, σ = 12.45 MPa) 
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and investigate the distribution of results.  This process was accomplished for 30 runs of 

23 specimens each.  Twelve of these simulation runs resulted in a 3-level staircase, for 

which the Svensson-Lorén corrected standard deviation was used as the calculated 

standard deviation.  The remaining 18 runs resulted in a 4-level staircase for which the 

bootstrap algorithm was used on the P-S data to calculate the average of the 60th- and 65th 

percentiles of the bootstrap distribution using the proposed standard deviation correction 

(with A = 1.0, B = 1.2, and m = 0.381).  A histogram of the results of these 30 runs is 

presented in Figure 51.  For these conditions, 26 of the 30 runs resulted in standard 

deviations within ± 2.2 MPa (18%) of the “true” value of 12.45 MPa.  The mean of the 

standard deviation estimates from the 30 runs was 12.74 MPa, with just a 1.76 MPa 

standard deviation.  Thus, these simulation data support the 12.45 MPa estimate obtained 

from the analysis developed in Chapter III to be a fairly accurate measure of the fatigue 

strength distribution of Ti-6Al-4V. 

Another way to evaluate the modified analysis (larger steps, use of the Svensson-

Lorén correction for 3-level data, and use of the bootstrap with bias correction for data 

with more than 3 stress levels) would be to assume that the 12.45 MPa estimate for 
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Figure 51.  Standard deviation results using modified staircase analysis for 30 runs 
using Ti-6Al-4V fatigue strength estimates as inputs. 
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standard deviation is equal to σ, the true fatigue strength standard deviation.  With this 

input, the staircase simulation can be used for a 23-specimen test run at 10 MPa (the 

original step size) using just the Dixon-Mood method.  Thus, this effort simulates 

possible test results as originally tested and analyzed before reworking the data into 

20 MPa steps.  The simulation was run for a material with underlying fatigue strength 

normally distributed with μ = 406.4 and σ = 12.45 using a 23-specimen staircase with 

Sinit = 400 MPa and step 10 MPa.  Figure 52 shows the simulated results for 1000 

replications.  Note that a larger number of simulation runs can be easily made here as the 

manual steps required by the bootstrap algorithm are not necessary.   
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Figure 52.  Simulated Dixon-Mood standard deviation results for 23-specimen 
staircase starting at 400 MPa with 10 MPa step for underlying Normal(406.4,12.45). 

Based on Figure 52, the mode of this distribution is on the order of 6 MPa (about 

half the true value), versus the mode on the order of 12 MPa using the modified analysis.  

The 6 MPa estimate clearly does not match well with the observed standard deviation of 

13.38 MPa based on the physical scatter of residuals about the S-N curve.  The mean of 

the Dixon-Mood distribution was 10.67 MPa with a 4.60 MPa standard deviation, thus 

the scatter in results is significantly larger than for the modified method.  Instead of a 
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large 1000-replication simulation, several 30-replication runs could also be made for 

comparison.  Such runs are shown in Figure 53.  Comparing the results obtained using 

the modified method in Figure 51 to those shown in Figure 53, it is clear that for this set 

of test conditions, the modified method provides a result which is much more accurate on 

average and has significantly reduced scatter when compared to the uncorrected Dixon-

Mood analysis. 
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Figure 53.  Several 30-specimen histograms randomly generated using the same 
conditions as Figure 52. 

 Summary 

In this chapter, the staircase analysis methods developed in Chapter III were 

applied to a real-world set of Ti-6Al-4V data generated on a 20-kHz ultrasonic test 

machine.  The analysis suggests that the larger step size, standard deviation corrections, 

and use of bootstrapping were able to estimate the fatigue strength parameters of the Ti-
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6Al-4V data quite well using a small-sample staircase test.  Validation of the standard 

deviation estimate was accomplished in two ways, one being an investigation of the 

physical scatter in fatigue strength from a larger number of Ti-6Al-4V tests, and the other 

being a simulation-based investigation which showed that tests conducted at the given 

staircase settings were likely to give results using the modified staircase method very 

close to those observed when the parameter estimates are used as true distribution 

parameters.  Reworking the data into 20 MPa steps versus the original 10 MPa steps 

allowed not just a means of creating a continuous staircase, but allowed larger step sizes 

which reduced standard deviation bias.  Using the new staircase analysis methods, the 

fatigue strength distribution of Ti-6Al-4V at 109 cycles was determined to have a mean 

fatigue strength of 406.4 MPa with a standard deviation of 12.45 MPa when 

approximated by a normal distribution.  However, the distribution was not quite normal 

and was better fit using an extreme value distribution.  Additionally, the fatigue strength 

scatter does not appear to vary significantly with fatigue life in the HCF regime.  Thus, 

the 12.45 MPa standard deviation estimate should provide a reasonable estimate at any 

number of cycles beyond 2 x 105.  Note that all failed specimens showed failure due to 

surface-initiated cracking.   

In the next chapter, the RFL model will be introduced in more detail for 

characterizing HCF behavior when more than just the fatigue strength distribution at a 

specified number of cycles is of interest. 
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V. INVESTIGATION OF TEST DESIGN USING THE RANDOM 
FATIGUE LIMIT MODEL 

The purpose of this chapter is to investigate the use of different test strategies using the 

random fatigue limit (RFL) model when characterizing high cycle fatigue behavior.  The 

goal of this analysis is to apply the findings to determine a small-sample test strategy to 

characterize S-N behavior for a different material with little existing data (namely, a beta-

annealed variant of Ti-6Al-4V), which is described in the next chapter.  The first part of 

this chapter presents the case for using a method other than staircase testing for 

characterizing behavior over a range of cycles.  Next, the necessary background of the 

RFL model is presented in more detail.  Lastly, an investigation of different test designs 

is presented by applying the RFL model to simulated test results, concluding with a 

recommended test design for the subsequent experimental test phase. 

Staircase Testing at Multiple Numbers of Cycles 

In Chapter III, the staircase method was investigated in detail as a means of 

quantifying the fatigue strength distribution at a given number of cycles.  This test was a 

quantal response method in which test results were binary – i.e., either a specimen 

survived the number of cycles or it failed.  This approach was shown to be a viable means 

of characterizing the mean (or median) fatigue strength and its scatter at a specified 

number of cycles.  An additional application which is of interest is determining the shape 

of the stress-life (S-N) curve in the very high cycle regime to determine if a fatigue limit 

exists.  For example, a researcher may be interested in determining the fatigue strength at 

not one, but two or more, numbers of cycles.  This type of investigation goes beyond the 

original application for which the staircase method was intended. 

A possible approach to determining the fatigue strength at more than one 

specified number of cycles is use of a single staircase test with extrapolated results.  An 

example of such an approach can be made using the 108 and 109 staircase data of 

Morrissey and Nicholas for Ti-6Al-4V specimens with stress-relief annealing using both 

cooling and no cooling during tests on the Air Force Research Laboratory’s 20 kHz 

ultrasonic fatigue testing machine [4; 52].  These tests were conducted under fully-

reversed loading (R = -1).  Tests were initially conducted up to 108 cycles and the Dixon-
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Mood method was used to estimate fatigue strength parameters at 108 cycles.  Those 

specimens which survived 108 cycles were then rerun at a later time with a runout limit of 

109 cycles.  The data for these tests are shown in Table 15 and Table 16 (also shown in 

Appendix A).  For the non-cooled specimens, no additional failures were observed going 

from 108 cycles to 109 cycles, and therefore the Dixon-Mood analysis is identical for both 

the 108 and 109 data.  Thus, the calculated mean fatigue strength at both points is the 

same, in this case 415 MPa (stress amplitude).  For the cooled data, there were three 

additional failures going from 108 to 109 cycles.  Using Dixon-Mood for the 108 data 

yields a mean fatigue strength of 403 MPa.  For the 109 cycles, the addition of the three 

failures violates the sequence of results dictated by staircase protocol, and hence a full 

staircase is no longer available in accordance with Dixon-Mood analysis.  Thus, use of 

the Dixon-Mood equations results in estimates which are no longer mathematically valid 

with respect to the maximum likelihood method underlying the analysis.  If one were to 

disregard the fact that the staircase is incomplete and perform the Dixon-Mood analysis 

anyway on the 109 data, the mean fatigue strength from the cooled samples is estimated 

to be 405 MPa.  Obviously, this answer is illogical since changing any survivals to 

failures in a given group of data should not increase the fatigue strength, it should lower 

this estimate.  Thus, unless some additional analysis (non-staircase) is performed on the 

109 data, or additional data points are collected at 109 cycles to fill in the staircase holes 

in order to create a complete staircase, one cannot use Dixon-Mood analysis to quantify 

the slope in the S-N curve from 108 to 109 cycles. 

 Table 15.  Ti-6Al-4V (stress-relief annealed with no cooling, R = -1) fatigue data for 
108 and 109 staircase tests from Morrissey and Nicholas [4; 52]. 

Specimen Stress (MPa) 108 Result Cycles 109 Result Cycles 
1 400 Survival 108 Survival 109 
2 410 Survival 108 Survival 109 
3 420 Failure 1.0 x 106 Failure 1.0 x 106 
4 410 Survival 108 Survival 109 
5 420 Failure 7.2 x 105 Failure 7.2 x 105 
6 410 Failure 3.0 x 105 Failure 3.0 x 105 
7 400 Survival 108 Survival 109 

8 410 Survival 108 Survival 109 
9 420 Survival 108 Survival 109 
10 430 Failure 3.8 x 105 Failure 3.8 x 105 
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Table 16.  Ti-6Al-4V (stress-relief annealed with cooling, R = -1) fatigue data for 108 
and 109 staircase tests from Morrissey and Nicholas [4; 52]. 

Specimen Stress (MPa) 108 Result Cycles 109 Result Cycles 
1 410 Failure 5.7 x 106 Failure 5.7 x 106 
2 400 Survival 108 Failure 1.6 x 108 
3 410 Failure 6.1 x 106 Failure 6.1 x 106 
4 400 Failure 9.0 x 106 Failure 9.0 x 106 
5 390 Survival 108 Failure 1.1 x 108 
6 400 Survival 108 Survival 109 
7 410 Failure 2.9 x 107 Failure 2.9 x 107 

8 400 Survival 108 Survival 109 
9 410 Failure 7.1 x 106 Failure 7.1 x 106 
10 400 Survival 108 Failure 6.0 x 108 

 

In addition to the likely possibility that an incomplete staircase (and thus 

incomplete analysis) would result from an extrapolated staircase approach, there are very 

real concerns about the statistical validity of such a method.  For one, such an approach 

raises the issue of multiple-weighting in the sense that a single specimen may create more 

than one S-N data point (even though the multiple points are consistent; i.e., a runout at a 

lower number of cycles and a failure at a higher number).  In a quantal response 

approach, this condition may appear to be of no concern as S-N data points are only used 

in a pass/fail manner.  If a specimen failed to survive X cycles, it must also have failed at 

Y cycles if Y > X.  Conversely, if a specimen survives X cycles, it must also survive Y 

cycles if Y < X.  However, from a statistical standpoint, if one is interested in the 

difference in material behavior at both X and Y cycles, then one needs to perform 

independent trials at X and Y cycles to test the hypothesis that the fatigue strength at X 

cycles is the same as the fatigue strength at Y cycles.  Using the same data as results for 

different numbers of cycles clearly violates the independence of the data sets.  It is 

certainly acceptable to use staircase results from tests conducted at a lower number of 

cycles, perform additional testing on the runout samples (assuming that no change in 

fatigue strength occurs from such interrupted testing), and fill in any staircase holes if 

they exist, in order to estimate fatigue strength parameters at a higher number of cycles.  

Likewise, one could use data from tests conducted at a higher number of cycles, 

reclassifying any failures between the lower number of cycles and higher number of 

cycles as survivals at the lower number of cycles, and perform a staircase analysis for the 
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lower number of cycles.  There is nothing intrinsically wrong with this mix-and-match 

approach for reporting data at one of the numbers of cycles.  However, it would be 

incorrect to then compare the results from the lower number of cycles to those from the 

higher number of cycles, thus making conclusions regarding differences in material 

behavior at the two numbers of cycles.  Such an approach leads to dependency between 

the two sets of data, and thus differences in material response may be overlooked.  For 

example, one could use the data from Table 15 to report the mean fatigue strength at 108 

cycles as 415 MPa.  Or, the data could be used to report the mean fatigue strength at 109 

cycles as 415 MPa.  But one should not use the data to say the difference between mean 

fatigue strengths at 108 and 109 cycles is 0 MPa, since the data sets are not independent.  

Thus, there is a bit of a paradox.  If one were to report the findings together, the fact that 

the data sets are highly correlated would need to be clearly made and observed 

differences would have to be presented without statistical confidence.  A solution to this 

dependency issue would be to conduct independent trials at each of the two numbers of 

specimens.  The drawback to this approach is of course the need to do twice the number 

of tests, as well as the inefficiency in utilizing the available data. 

In addition to this statistical dependence, the issue of staircase step size plays a 

role in masking differences as well.  If one were to use a step too large compared to the 

difference in fatigue strength at the two numbers of cycles, then it is quite possible that 

runouts using the lower number of cycles will also run out at the higher number of cycles 

simply because the step is too large to observe any additional failures.  The obvious 

solution would appear to be the use of step sizes which are small relative to the change in 

fatigue strength in order for this change in fatigue strength to appear in the results (as a 

survival at the lower number of cycles which is a failure at the higher number of cycles).  

For example, if one wanted to detect any changes in fatigue strength on the order of 

5 MPa or less, a step size of 2-3 MPa may be considered.  However, specifying step size 

based on the difference in fatigue strength between two numbers of cycles could 

potentially lead to seriously biased results.  As the work of Chapter III showed, step sizes 

should be chosen rather carefully based on true standard deviation of the fatigue strength 

in order to minimize standard deviation bias inherent in the Dixon-Mood method.  

Although methods such as bias correction were shown to alleviate this bias, intentionally 
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basing step size on considerations other than true standard deviation would knowingly 

lead to greater errors in standard deviation estimates.  If one is only concerned with the 

difference in mean fatigue strengths between the two numbers of cycles, this issue is not 

as relevant since the Dixon-Mood analysis of mean fatigue strength is much less 

dependent on step size. 

An additional problem with using staircase testing to quantify fatigue strength 

differences at two or more numbers of cycles is the lack of data utilization inherent in 

such a method.  If one were interested in the shape of the S-N curve between two 

numbers of cycles (like 108 and 109), it would be a waste to use the S-N data as merely 

pass/fail results rather than stress-life results.  If the data are used in their stress-life 

format, S-N curve-fitting methods may be used to better estimate the fatigue strength 

differences.  As an analogy, use of the staircase method for this application would be like 

trying to quantify the mean differences in height between two groups by selecting a 

height and recording if a member from group A and a member from group B are taller or 

shorter than this height, and then repeating this approach for each member, selecting 

different heights for comparison against.  A better approach would obviously be 

measuring each individual’s height and then using a probability distribution to estimate 

the mean difference and associated confidence interval between the two groups. 

This section provides some rationale for avoiding an extrapolated staircase test as 

a means of determining the differences between fatigue strength at two or more numbers 

of cycles.  Note that the staircase test was not intended for such an application, but it is 

still well tailored for fatigue strength estimation at a single specified number of cycles 

using the methodology of the previous two chapters.  With an extrapolated staircase test 

not a viable option for the characterization of the fatigue strength over a range of cycles, 

the use of the random fatigue limit (RFL) model was considered for such a purpose.  The 

RFL model, another likelihood-based analysis method, was specifically developed to 

characterize S-N behavior for fatigue data sets with runouts and thus seems a logical 

method to investigate for use in evaluating fatigue strength behavior in the ultra high 

cycle regime [66]. 
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Methodology of the RFL Model 

The RFL model was developed by Pascual and Meeker in 1999 [66].  Their 

method was “motivated by the need to develop and present quantitative fatigue-life 

information used in the design of jet engines” [66].  Although Pascual and Meeker 

specifically noted the staircase method as an “efficient and effective way of estimating 

the median fatigue limit,” they noted that “it is not used to estimate the stress-life 

relationship” [66].  This section provides a brief overview of the RFL model in order to 

lay the groundwork for the test design analysis performed in the next section. 

Genealogy of the RFL Model 

The genealogy of the model traces its lineage through Nelson’s work in 1984 

[59].  Nelson modeled the fatigue life of a nickel-based superalloy, creating probabilistic 

S-N curves incorporating non-constant standard deviation in fatigue life and using 

censored data (runouts) through a maximum likelihood approach.  Standard models for 

fatigue curves before Nelson’s work typically assumed a lognormal distribution in fatigue 

life for a given stress level.  The standard deviation of this lognormal fatigue life was 

generally assumed to be constant (i.e., independent of the stress level), as illustrated in 

Figure 54.  Thus, the distribution in fatigue life is the same for both low-cycle and high 

cycle regimes.  However, fatigue-life data have shown generally more scatter in the high 

cycle (low stress) regime for many materials, leading to Nelson’s analysis. 

Log Stress (S)

Log Cycles (N)

50%
10%

1%

 

Figure 54.  Probabilistic stress-life curve with constant standard deviation in fatigue 
life as a function of stress. 
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Nelson developed S-N models using non-constant standard deviations as a 

function of the stress level.  He assumed a linear form for μ, the mean fatigue life, as a 

function of stress (represented by the 50% line in Figure 54), with a log-linear standard 

deviation σ of fatigue life, as shown below where a and b are parameter constants used to 

fit the data, LPS is the log pseudo-stress (pseudo-stress being the effective stress used for 

the application), and LPS* is the mean of the log pseudo-stress values [59]: 

 *)}({)( LPSLPSbaeS −⋅+=σ  (40) 

In addition to the linear μ model, he used a quadratic form for μ, also in 

conjunction with the log-linear form for σ shown above.  The quadratic form was more 

useful for S-N data which exhibit curvature.  An illustrated pictograph of the quadratic μ, 

non-constant σ, P-S-N model is shown in Figure 55.  The fatigue model based on these 

assumptions provided a generally better fit for the nickel-based superalloy data, although 

a problem was observed in that some percentiles of the P-S-N curve may be greater (in 

terms of fatigue life) at intermediate stresses than at low stresses.  This situation is of 

course impossible as fatigue life cannot increase as stress increases, but the increasing 

standard deviation as stress decreases may cause the modeled curves to “bend back” too 

far for some data sets (as depicted by Figure 56). 

Log Stress (S)

Log Cycles (N)

50%10%1%

 

Figure 55.  Probabilistic stress-life curve with non-constant standard deviation in 
fatigue life as a function of stress. 
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Figure 56.  P-S-N curve exhibiting a bend-back effect. 

The RFL development also built upon the work of Hirose in 1993 [37], who used 

maximum likelihood methods to estimate the fatigue limit of polyethylene terephthalate 

(PET) films as well as their mean life under service stress.  Hirose fitted a Weibull 

inverse power relationship that included a fixed fatigue life parameter (constant).  In 

addition, Nelson’s text [58] suggested that the fatigue limit may be considered a random 

parameter, such that specimens have different fatigue limits which make up a “strength 

distribution.”  This suggestion would later generate interest in modeling using a random 

variable for fatigue limit. 

Before developing the RFL model, Pascual and Meeker presented a model in 

1997 [67] incorporating a constant fatigue limit parameter (similar to Hirose) using non-

constant standard deviation of a lognormal fatigue life (similar to Nelson), applying this 

model to the nickel-based superalloy data of Nelson [59].  The fatigue data is described 

with x1, x2, …, xn denoting pseudo-stress levels of n specimens, and Y1, Y2, …, Yn 

denoting the associated numbers of cycles tested.  The fatigue limit is denoted as γ.  For 

xi > γ, fatigue life Yi was modeled as lognormally distributed such that log(Yi) was 

distributed normally with mean μ(xi) and standard deviation σ(xi).  The form of the mean 

fatigue life and the standard deviation of fatigue life are thus given as [67]: 

 γγββμ μμ >−+== iiii xxYx   ),log()][log(E)( ][
1

][
0  (41) 

 γββσ σσ >+== iiii xxYx   )],log(exp[))(log(Var)( ][
1

][
0  (42) 
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In this fixed fatigue limit model, β0
[μ], β1

[μ], β0
[σ], β1

[σ], and γ are unknown 

parameters to be estimated from the fatigue test data.  The β constants are without 

restrictions, however β1
[σ] < 0 corresponds to a decreasing standard deviation as stress 

increases (generally the case with most fatigue data).  The size of the fatigue limit 

parameter (γ) determines the amount of curvature in the S-N plot.  The plot approaches 

linearity as γ approaches zero.  Large values of γ indicate significant curvature.  The use 

of this fatigue limit parameter allows a “physically appealing alternative” to the quadratic 

form of Nelson’s model of S-N curvature, according to Pascual and Meeker [67].  This 

model still may exhibit the “bend back” problem for some data sets as seen with Nelson’s 

quadratic model, but Pascual and Meeker note that this effect was not observed in the 

range of the superalloy data, and is minimized compared to the quadratic model.  The 

simulation work performed to evaluate this model used constant interval stress levels 

with one data point per stress level.  The primary shortcoming of the model, as noted by 

Pascual and Meeker, was the assumption of a constant fatigue limit.  By using a single-

valued parameter to describe the fatigue limit, the model requires that γ is less than the 

lowest stress tested such that log(xi - γ) is defined, regardless of whether the specimen at 

the lowest stress level failed or not.  As Annis and Griffiths noted [11], this model thus 

caused the γ asymptote to be “so low as to produce an unrealistic material model that had 

to be continually revised downward to accommodate newer, low stress data.”  The 

incorporation of a variable fatigue limit based on the concept of Nelson’s “strength 

distribution” led to the refinement of this model, which then became the RFL model 

proposed in 1999 [66]. 

RFL Model Formulation 

The RFL model accounts for the two main trends observable in most S-N data 

using engineering materials; namely, the increase in fatigue life scatter as stress level is 

decreased, and the curvature associated with a fatigue limit.  The formulation of the 

model is shown in Equation 43 using the notation of Annis and Griffiths from 2001 [11] 

rather than the original notation used by Pascual and Meeker [66], which is less 

conventional for fatigue analysis.  The fatigue life for each specimen tested is denoted by 
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N and the associated stress level is denoted by S.  Fatigue life for specimen i is then 

modeled by the following equation: 

 iiiiii SSN γεγββ >+−+=   ,)log()log( 10  (43) 

In this equation, β0 and β1 are curve coefficients, γi is the fatigue limit of specimen i, εi is 

an error term associated with specimen i, and log denotes natural logarithm.  Unlike the 

constant fatigue limit formulation of Equation 41, the fatigue limit used in Equation 43 is 

a random variable.  Note that the error term εi is the random life variable associated with 

scatter from specimens which have the same value for fatigue limit γ.   

The logarithm of the random variable for fatigue limit γ is also a random variable, 

and if V is defined such that V = log(γ), then Pascual and Meeker assume V to be 

distributed with probability density function (pdf) given by [66]: 
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In this equation, μγ and σγ are location and scale parameters for the distribution of γ, 

respectively, and φV may be the standardized smallest extreme value (sev) or normal pdf.  

Next, they let x = log(S) and W = log(N) so that x and W are the logarithms of the stress 

and fatigue life, respectively.  Then for V < x (i.e., the fatigue limit is less than the stress 

level tested), they assume that W given V (denoted as W⏐V) has a pdf of the form [66]: 
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In this equation, β0 + β1log(exp(x)-exp(v)) acts as a location parameter and σ acts as a 

scale parameter. φW⏐V may be the standardized sev or normal pdf.  The marginal pdf of W 

is then given by [66]: 
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where θ = (β0, β1, σ, μγ, σγ) and μ(x, v, θ) = β0 + β1log(exp(x)-exp(v)).  Finally, the 

marginal cumulative distribution function (cdf) of W (the logarithm of fatigue life) can be 

given by [66]: 
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where ΦW⏐V is the cdf of W given V.  This rather complicated formulation is the statistical 

representation of the RFL model.  Pascual and Meeker note that there are no closed-form 

solutions for the density and distribution functions of the fatigue life, or specifically, 

W = log(N).  However, numerical means can be used to evaluate these equations. 

It is important to note that there are two random variables in the model described 

by Equations 43 through 47 which have been specified through a probability distribution.  

The error term ε which represents the scatter in fatigue life can be adequately modeled by 

the lognormal distribution for many engineering materials (and thus, the logarithm of 

fatigue life is normal).  Then, the conditional distribution for cycles to failure (W = 

log(N)) given γ (V = log(γ)) will be a lognormal distribution with mean β0 + β1log(S - γ) 

and standard deviation σε, such thatε is lognormal(0,σε) [11].  As for the distribution of 

the random variable γ, the Weibull distribution is an adequate choice for describing the 

skewed downward (towards lower stress levels) strength distribution of many engineering 

materials [11].  The Weibull distribution introduces two parameters, namely the location 

parameter η and the scale parameter β, which correspond to the location and scale 

parameters μγ and σγ, respectively, used by Pascual and Meeker.  When the RFL model 

incorporates these assumptions, it includes five total parameters (β0, β1, σε, η, and β).   

Estimating the Model Parameters 

Unlike conventional S-N analysis in which all specimens are tested until failure, 

an ordinary least-squares approach cannot be used to estimate the parameters of the 

probabilistic S-N model used in the RFL approach.  Ordinary least-squares fitting, 

although popular amongst analysts since its formulation by Gauss and having a well-

established place in statistical analysis of fatigue experiments, does not have the 

capability to account for partial information data points (runouts).  In addition, an 

ordinary least-squares approach assumes constant variance, which of course may not be 

the case for S-N data [11].   

The approach taken by Pascual and Meeker [66] to solve the parametric 

estimation problem is the use of maximum likelihood methods, as described by Nelson 
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for data with runouts [58].  First, the likelihood function is defined for data tested at stress 

levels xi = log(Si) and cycles of wi = log(Ni) with n samples.  The likelihood is given by: 
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Thus, the likelihood function L(θ) can be interpreted as the probability of 

observing the experimental data given a set of model parameters θ.  The set of parameters 

which maximizes this value of likelihood is taken as the best-fit set of parameters, and 

thus a curve fit is accomplished.  In practice, a log-likelihood function is generally used 

so that terms may be added rather than multiplied.  Maximizing the log-likelihood 

function produces the same set of parameters as maximizing the likelihood function, and 

thus either function may be used.  The log-likelihood function is shown below: 

 ∑
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)()](log[)( θθθ LL  (50) 

The likelihood problem has already been modeled and solved by Pascual and 

Meeker for combinations of normal and sev distributions for the logarithm of fatigue life 

and the logarithm of the fatigue limit [66].  Annis developed a workbook using Microsoft 

Excel™ which runs on a personal computer (PC) to calculate the likelihood of a set of 

experimental data given user-controlled parameter settings for an underlying Weibull 

fatigue limit and lognormal fatigue life [12].   

Test Design using the RFL Model 

At this point, the inadequacy of the staircase method for analyzing the S-N 

behavior of a material over a specified range has been presented, along with the 

introduction and formulation of the RFL model which was specifically developed to 

analyze the S-N behavior of high cycle fatigue data.  There remains one more question to 

address before an analysis of the HCF behavior of a material can be planned and 

executed using the RFL model.  Namely, the problem of test design has not been 
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discussed to this point.  Pascual and Meeker applied their model to existing data (the 

nickel-based superalloy data of Nelson) and an analysis of Ti-6Al-4V data using a Smith-

Watson-Topper effective stress from the National HCF S&T Program was accomplished 

by Annis and Griffiths [11].  However, nothing has emerged in the literature since the 

RFL model’s introduction in 1999 which suggests how one should plan a test to prepare 

for analysis using the RFL model.  In fact, Pascual and Meeker addressed this void in 

their initial RFL paper as an area for further research with the following: 

“There are important questions about how to design fatigue experiments 
under the random fatigue-limit model.  Traditional methods will have to 
be extended to account for the nonlinear relationship between life and 
stress.  Large-sample approximations would provide easy-to-compare 
evaluations of test plan properties with respect to the efficiency of 
estimating quantities of interest.  Simulation studies require much more 
computer time but can be conducted to study the small-sample properties 
of the test plans.  This is currently under investigation.”  [66] 

This section presents a simulation-based analysis of several test design strategies 

to determine their effectiveness in conjunction with an RFL analysis.   

Scoping the Problem 

To start an investigation of test design, it is important to set a baseline situation 

for which the test should be designed to address.  For this study, the investigation of the 

HCF behavior of a beta annealed Ti-6Al-4V alloy was selected as the baseline situation.  

After completion of the Ti-6Al-4V tests from Chapter IV, a second material was 

considered for which to demonstrate the modified staircase technique.  The choice of 

material was narrowed down to the beta annealed Ti-6Al-4V alloy as this material was 

already available and samples for use in the 20-kHz ultrasonic fatigue testing machine 

could be fabricated relatively quickly and cheaply.  The specifics of this alloy are 

described in more detail in Chapter VI.   

Although the initial objective was the demonstration of the modified staircase 

technique, it was decided that due to the little information available in the literature on 

beta annealed Ti-6Al-4V high cycle fatigue behavior, a test which yielded more 

information than just the fatigue strength distribution at a specified number of cycles 
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should be considered.  In discussions with AFIT and AFRL representatives, several 

questions of interest emerged which included: 

• What is the fatigue strength of the alloy in the 107-cycle regime? 

• What is the fatigue strength of the alloy in the 109-cycle regime? 

• What does the fatigue strength distribution look like in the gigacycle regime? 

• Are subsurface crack initiations observable during long-life testing? 
 
Based on these questions, the preferred test strategy must balance two objectives; 

namely, (1) address the slope of the S-N curve in the very high cycle regime, and (2) 

address the fatigue strength distribution at 109 cycles.  These two objectives were the 

guidelines used in test design analysis.  Test limitations included the ability to provide 

machined specimens, the availability of the 20-kHz fatigue testing apparatus, and the 

compressed test schedule due to work returning the machine to fully-operational status 

after a new power supply was installed.  Due to these limitations as well as the objective 

of ensuring results were applicable to small-sample test programs, test designs 

incorporating 12 specimens were considered.   

Three Approaches to Consider 

In order to meet the two objectives, three test designs were considered.  These 

three approaches stem from the fatigue strength strategies already in the literature.  The 

first test design was a traditional staircase test starting at 400 MPa with a 20 MPa step 

and conducted for a 109-cycle maximum duration using 12 specimens.  The S-N data 

points from this test would be used in the RFL model to evaluate the S-N behavior in the 

very high cycle regime, and the quantal response data could also add information about 

the fatigue strength distribution at 109 cycles.  The starting stress and step size are based 

on the results from the two-phase Ti-6Al-4V tests reported in Chapter IV.  Specifically, 

the starting stress is near the true fatigue limit of the α-β variant, and the step size is on 

the order of 1.5 times the true standard deviation, which was shown in Chapter III to 

provide less standard deviation bias.  This approach is termed the “traditional staircase.” 

The second approach uses a balanced strategy of four stress levels with three 

specimens each.  Again, the initial stress level is set at 400 MPa, and 20 MPa intervals 

are used.  If the first three specimens at 400 MPa all fail to reach 109 cycles, then the next 
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three specimens are tested at 380 MPa.  If the first three all survive, then the next three 

are at 420 MPa.  If at least one failure and one survival are observed at 400 MPa, then 

both 420 MPa and 380 MPa stress levels are used.  This process is repeated until four 

stress levels have been used.  The advantage to using four stress levels with three 

specimens each rather than three stress levels with four specimens each is that the 

staircase bootstrapping technique may be used on the P-S data from such a test to give an 

assessment of the standard deviation of the fatigue strength at 109 cycles.  Recall that the 

bootstrapping technique proved to be quite effective for four or more stress levels, but 

was rather ineffective with three-level staircase data.  The 20 MPa step may be altered in 

this strategy if the data suggest the step is too large.  For example, if the tests at 400 MPa 

were all failures and the tests at 380 MPa were all survivals, then the remaining two 

levels would be between 380 MPa and 400 MPa (i.e., 386.7 MPa and 393.3 MPa).  

Another example would be if all failures were observed at 400 MPa, two of three failed at 

380 MPa, and then all survived at 360 MPa.  In this case, the fourth stress level would be 

taken as 370 MPa.  Thus, the step was constant in all cases except those in which the 

P(failure) = 0 and P(failure) = 1 stress levels are both found with less than three full steps 

between them.  The advantage to changing the step in these cases is to get more data at 

stress levels with non-unity and non-zero probabilities of failure.  The drawback to 

changing the step is that the staircase bootstrap analysis can no longer be used for those 

data sets since it requires constant step size.  This approach is termed the “balanced 

strategy.” 

The third approach uses an adaptive staircase strategy in which the starting stress 

is set at 400 MPa and the first step is 20 MPa, again with a runout limit of 109 cycles.  If a 

change in result occurs, the step size is halved.  The step may be halved up to two times 

(thus the smallest step possible is 5 MPa).  This approach was considered in case the 

initial step was significantly larger than the true standard deviation in fatigue strength.  

The S-N data would be analyzed using the RFL model, but a Dixon-Mood analysis of 

staircase data would not be possible using this variable-step approach.  This approach is 

termed the “adaptive approach.” 

The test strategies are illustrated together in Figure 57. 
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Figure 57.  Illustration of test designs used with the RFL model. 
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Simulation Scenarios 

In order to evaluate the three test approaches, three scenarios for underlying 

material behavior were considered.  The curve shapes were created using the Nishijima 

hyperbolic S-N model as described by Hanaki et al [36].  This model allows a convenient 

way to describe S-N curves with varying degrees of curvature.  The model is illustrated 

pictorially in Figure 58.  There are four parameters:  the fatigue limit E, a curvature 

constant C, and two location constants A and B contained in the term (B – E)/A as shown.   

S

N

E

(B-E)/A

√ C
S

N

E

(B-E)/A

√ C

 

Figure 58.  Nishijima S-N model. 

The first scenario used an S-N curve with a linear region in the lower-cycle region 

which gradually transitioned to a fatigue limit between 105 and 107 cycles.  The fatigue 

strength distribution for this scenario was modeled as normal with increasing standard 

deviation as the stress decreased.  The second scenario assumed curved S-N behavior 

with less evidence of a fatigue limit before 109 cycles.  The fatigue strength distribution 

was again modeled as normal with increasing standard deviation as stress decreased.  For 

the third scenario, a bilinear S-N model was used which exhibited a more distinct 

transition from the sloped lower-cycle behavior to the flat fatigue-limit behavior starting 

near 106 cycles.  Unlike the previous two scenarios, a skewed fatigue strength distribution 

was used, with the larger percentile differences towards lower stresses.  Standard 
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deviation again increased as stress decreased.  The Nishijima model constants for each of 

these three scenarios are shown in Table 17.  The three scenario models are plotted in 

detail on the following pages (Figure 59 through Figure 64), where the top figure shows 

the S-N behavior from 104 to 109 cycles, and the bottom figure zooms in to show the 

percentile curves in more detail.  These three scenarios typify the possible characteristics 

of S-N behavior for most materials.   

Table 17.  Nishijima S-N model constants for the three S-N scenarios. 

Scenario Descriptor A B C E 
1 Flat S-N from 107 to 109 -130 1000 3500 350 
2 Sloped S-N from 107 to 109 -100 960 18000 330 
3 Linear S-N with fatigue limit -120 1100 500 400 

 

Simulation Process 

A scenario was analyzed by first generating 12 random numbers (corresponding 

to 12 specimens).  The test protocol was used to select the starting stress (400 MPa in 

each case), and then the associated P-S-N plot and the first random number were used to 

determine an associated number of cycles until failure (or runout if greater than 109 

cycles) for the starting stress.  This process was accomplished manually as scenarios were 

developed with fatigue strength distributions specified rather than fatigue life 

distributions.  Thus, fatigue life sample points were determined using the fine P-S-N plots 

(Figure 60, Figure 62, and Figure 64) by reading the N corresponding to the stress level 

and random number (represents percentile point).  For example, using the 400 MPa 

starting stress with the fine P-S-N plot of Figure 60 and a random number of 0.75, one 

would calculate a fatigue life of 2.0 x 105 cycles.  Note that random numbers greater than 

0.5 correspond to percentile lines higher than the median (50%) S-N line, while random 

numbers less than 0.5 correspond to percentile lines lower than the median.  The stress 

level for the next specimen is then selected according to the strategy protocol.  Once 12 

S-N data points are generated in this manner, the PC-based RFL modeling tool of Annis 

[12] was used to determine the values of the five RFL parameters which result in the best 

curve fit (i.e., maximum log-likelihood).  Maximizing the log-likelihood using five 

parameters is a very iterative process and may be quite time consuming in order to 

account for the significant interaction amongst some of the parameters.   
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Figure 59.  Coarse P-S-N plot of scenario #1 material behavior. 
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Figure 60.  Fine P-S-N plot of scenario #1 material behavior. 
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Figure 61.  Coarse P-S-N plot of scenario #2 material behavior. 
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Figure 62.  Fine P-S-N plot of scenario #2 material behavior. 
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Figure 63.  Coarse P-S-N plot of scenario #3 material behavior. 
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Figure 64.  Fine P-S-N plot of scenario #3 material behavior. 
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The process described thus far represents analyzing one run for one scenario for 

one test strategy.  Using the same random number values (in order to control variance in 

results), the other two test strategies are then accomplished for the current scenario.  Then 

the process is repeated for the other two scenarios.  Then the process is repeated in its 

entirety for another run with 12 new random number draws.  In total, three complete runs 

were accomplished for each test design strategy and material scenario combination, 

yielding 27 runs in total (and thus 27 data sets to be analyzed using the RFL model).  The 

simulation process was thus a very manually-intensive process, with each of these 27 

runs requiring a manually simulated test followed by an iterative RFL analysis.  A sample 

set of runs are shown in Table 18 for scenario #3 (using Figure 64).   

Table 18.  A set of sample simulation runs for scenario #3. 

Traditional 
Staircase 

Balanced 
Strategy 

Adaptive 
Approach Specimen Random 

Number S 
(MPa) 

N 
(cycles) 

S 
(MPa) 

N 
(cycles) 

S 
(MPa) 

N 
(cycles) 

1 0.581 400 109 400 109 400 109 
2 0.466 420 7.0x105 400 2.0x108 420 7.0x105 

3 0.614 400 109 400 109 410 3.0x106 

4 0.119 420 3.3x105 380 1.4x106 400 5.7x105 

5 0.435 400 7.0x106 380 109 390 109 
6 0.352 380 109 380 109 400 1.7x106 

7 0.534 400 109 420 8.0x105 395 109 
8 0.220 420 4.1x105 420 4.1x105 400 8.0x105 

9 0.998 400 109 420 109 395 109 
10 0.207 420 8.0x105 440 1.6x105 390 1.4x106 

11 0.853 400 109 440 6.3x105 385 109 
12 0.253 420 4.4x105 440 1.8x105 390 2.1x106 

 

Simulation Results 

For each strategy/scenario combination, three data sets were generated with 

associated RFL curve fit analyses.  In Appendix H, the RFL best-fit P-S-N curves are 

shown for each strategy/scenario combination.  The scales for each scenario are identical, 

and thus the figures give a visual perspective on the differences in S-N output due to test 

strategy.  For some runs, the random data sets provided quite similar results despite 

differing test designs, as shown in Figure 65 for a run with the traditional staircase and 
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balanced strategy.  However, the test designs produced quite different RFL model results 

in other cases, with the extreme case shown in Figure 66. 
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Figure 65.  RFL analysis for scenario #1 using the traditional staircase and balanced 
strategy for random number set #1. 
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Figure 66.  RFL analysis for scenario #3 using the traditional staircase and balanced 
strategy and random number set #1. 

For each P-S-N plot made using the RFL model, four statistics of interest were 

calculated:  (1) the median fatigue strength at 107 cycles, (2) the median fatigue strength 

at 109 cycles, (3) the 10th-percentile fatigue strength at 107 cycles, and (4) the 10th-

percentile fatigue strength at 109 cycles.  These four statistics give a fair perspective on 
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how the test design characterizes S-N behavior in the very high cycle regime.  Table 19 

summarizes the very high cycle statistics of interest calculated from the RFL best-fit 

curves for each strategy/scenario combination, with the mean value of fatigue strength 

over the three runs shown for each statistic. 

Table 19.  Summary of simulated results for each strategy/scenario combination. 

Scenario #1 – Relatively flat S-N behavior from 107 to 109 

Method FS50@107 FS50@109 FS10@107 FS10@109 
Staircase Mean 371.3 363.7 357.7 349.7 
Balanced Mean 370.3 363.3 356.3 349.7 
Adaptive Mean 364.0 355.3 346.0 337.7 
True Value 363 357 347 339 
Scenario #2 – Sloped S-N behavior from 107 to 109 
Method FS50@107 FS50@109 FS10@107 FS10@109 
Staircase Mean 467.0 381.0 442.0 357.3 
Balanced Mean 446.7 384.3 425.0 363.7 
Adaptive Mean 464.3 384.3 436.0 357.0 
True Value 434 385 412 361 
Scenario #3 – Linear S-N behavior with fatigue limit 
Method FS50@107 FS50@109 FS10@107 FS10@109 
Staircase Mean 430.3 404.3 419.3 389.0 
Balanced Mean 427.6 403.0 410.3 385.0 
Adaptive Mean 420.3 399.3 408.0 386.3 
True Value 404 402 369 356 
Note:  FS50 = median fatigue strength, FS10 = 10th-percentile fatigue strength 

 

Based on the simulation results, several observations can be made.  First, the 

adaptive approach provided the best fit for scenarios #1 and #3 (as shown in Figure 67 

and Figure 68, respectively).  Both these scenarios incorporated a distinct fatigue limit 

beginning prior to 109 cycles.  However, note that the traditional staircase and the 

balanced strategy were very similar for these scenarios in an average sense, with the 

balanced strategy providing a slightly better fit.  Note that none of the strategies were 

particularly effective in characterizing the flat S-N behavior in the 107 to 109 regime for 

scenario #3.  The difference between 107-cycle and 109-cycle mean fatigue strengths 

ranged from 21 to 26 MPa, despite the true difference of just 2 MPa.  Thus, the RFL 

model using any of the strategies was very ineffective in characterizing the bilinear S-N 

model with little curvature in transition from sloped to flat behavior. 
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Figure 67.  Comparison of mean fatigue strength results for scenario #1. 
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Figure 68.  Comparison of mean fatigue strength results for scenario #3. 

For the second scenario, in which there was significantly sloped S-N behavior in 

the very high cycle regime, the balanced strategy performed better on average (shown by 

Figure 69).  The balanced strategy showed a difference between 107-cycle and 109-cycle 

mean fatigue strengths equal to 62 MPa, compared to the true 49 MPa difference, while 

the two staircase-based methods were 80-86 MPa of difference.  Once again, the RFL 
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model using any of the test designs resulted in more slope in the very high cycle regime 

than actually existed. 
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Figure 69.  Comparison of mean fatigue strength results for scenario #2. 

Based on this set of simulation data, the adaptive approach appears to do a better 

job of characterizing S-N behavior in the very high cycle regime when the curve is less 

sloped over this area, while the balanced strategy does a slightly better job when the 

curve is more sloped.  These results are based on a small set of simulations, however, and 

should not be considered definitive just yet.  Note that none of the test strategies using the 

RFL model did a very good job of representing a very flat region using a 12-specimen 

test.  Additionally, the results of this analysis show that there is little observable 

difference in RFL results (for the very high cycle regime) for cases in which data sets are 

generated from a staircase approach or a balanced approach.  This finding is significant in 

that one can choose either a staircase or probit-type strategy without affecting the RFL 

results too greatly.  The adaptive approach, although it appeared to fit better in some 

cases, does not allow an alternative analysis of fatigue strength distribution at the 

maximum number of cycles as does a staircase or balanced approach, which may use 

Dixon-Mood (with bootstrapping) or probit analysis as a secondary means to characterize 

the fatigue strength distribution.  In addition, the adaptive approach is more complicated 

in terms of test planning than the staircase or balanced approaches.  It is also quite 
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possible that apparent advantages to the adaptive approach are simply due to the fact that 

some step sizes in this approach were smaller, and thus more data were grouped closer to 

the mean and this allowed slightly better modeling of flatter S-N behavior.  For these 

reasons, the balanced strategy was recommended for use on the second material.   

Summary 

In this chapter, the problems inherent with the use of the staircase method for 

characterizing the fatigue strength over a range of cycles were discussed.  The RFL 

model was introduced for this application, and an overview of its formulation was 

presented.  The problem of test design using the RFL model was addressed through a 

simulation-based study.  The results of this study suggest that use of an adaptive staircase 

approach may provide better characterization of fatigue behavior in the very high cycle 

regime for materials which exhibit a definitive fatigue limit.  However, the adaptive 

strategy does not allow an alternative means of characterizing the fatigue strength 

distribution.  Since the balanced 4-level strategy performed as well or better than the 

traditional staircase approach for each simulation scenario, it may provide a preferred 

means of RFL test planning with small sample sizes.  This finding is really the key result 

of this analysis—namely, that there was no obvious disadvantage to the use of the 

balanced approach compared to the traditional staircase.  Thus, one could perform a 

balanced strategy with four fixed stress levels with three specimens each and use the S-N 

data in the RFL model and the P-S data in a staircase bootstrap, thus ensuring four stress 

levels of data.  Thus, the balanced approach was recommended for use with the small-

sample beta annealed Ti-6Al-4V fatigue tests.  The results of this analysis show that 

further investigation of an adaptive approach to staircase testing may be of future benefit.  

The beta annealed Ti-6Al-4V tests are discussed in detail in the next chapter. 
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VI. ANALYSIS OF BETA ANNEALED TI-6AL-4V TEST DATA USING 
RFL MODELING AND ALTERNATIVE MEANS 

In this chapter, the investigation of a beta annealed Ti-6Al-4V alloy is detailed.  In the 

first section, a description of the fatigue experiment is presented, in which a 20-kHz 

ultrasonic fatigue testing machine was used for tests up to 109 cycles.  Next, the analysis 

of experimental data using the RFL model is detailed.  Deficiencies of the model are 

discussed.  Finally, alternative means of characterizing the stress-life behavior are 

presented.  These alternative means include a bilinear S-N model with horizontal fatigue 

limit and a Nishijima S-N model, both using an extreme value distribution to represent 

the scatter in fatigue strength at a given number of cycles.   

Experiment Objective 

The goal of the beta annealed Ti-6Al-4V tests was to determine the S-N behavior 

of the titanium alloy in the HCF regime.  In addition to estimating the shape of the S-N 

curve, a characterization of the fatigue strength distribution was sought in order to 

develop a probabilistic S-N curve from which probabilities of failure for given cycle 

times could be determined for given stress levels.  Use of the beta annealed titanium alloy 

allowed an investigation of a material for which there are relatively few HCF data in the 

literature.  The experiment thus provides a real-world scenario in which S-N behavior is 

sought for a material with few existing data using a small-sample testing program. 

Experimental Background 

This section provides an overview of the beta annealed Ti-6Al-4V experiments. 

Material Microstructure 

In Chapter II, an overview of the heat treatment of titanium alloys was presented.  

Chapter IV discussed the specific processing for the Ti-6Al-4V test material.  For this 

next series of tests, the microstructure of this titanium alloy was altered in order to create 

the beta annealed microstructure.  Processing included a 10-minute heat treatment at 

1005°C, followed by a rapid quenching at 100°C -130°C per minute, and then a final 
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annealing at 705°C for two hours [4].  The resulting microstructure is one of lamellar 

design, as shown by the micrograph in Figure 70.   

 

Beta solution treated microstructure:
10 min at 1005C ; 100-130C/min ; 2 hrs at 705C

100μm100μm100μm  

Figure 70.  Microstructure for beta annealed Ti-6Al-4V specimens as used in 20-
kHz fatigue testing (provided by AFRL/MLLM). 

A comparison between the bimodal (α-β) and lamellar (beta annealed) Ti-6Al-4V 

microstructures was also conducted by Nalla et al [57].  Their experiments incorporated 

materials processing very similar to the AFRL/MLLM processing.  The bimodal material 

for their experiments was solution heat treated for 1 hour at 925°C and stabilized at 

700°C for 2 hours [57], as compared to the 1 hour heat treatment at 932°C and 

stabilization for 2 hours at 705°C for the AFRL/MLLM material.  For the beta annealed 

material, the Nalla et al experiments used heat treatment at 1005°C for 10-30 minutes, 

followed by a rapid quench at 100°C per minute in helium gas, then a 2-hour stabilization 

at 700°C [57], also quite similar to the AFRL/MLLM processing.  Micrographs of the 

microstructures used in their tests are shown in Figure 71.  These pictures show the 

significant difference in the grain structures of the bimodal (α-β) and lamellar (beta 

annealed) Ti-6Al-4V. 
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Figure 71.  Comparison of microstructure for (a) an α-β (solution treated and 
overaged, STOA) Ti-6Al-4V alloy, and (b) a lamellar beta annealed Ti-6Al-4V alloy 

(from Nalla et al [57]). 

Test Machine and Specimen Design 

The same equipment used for the α-β Ti-6Al-4V tests described in Chapter IV 

was used for the beta annealed tests (see Figure 40).  Thus, these tests were all conducted 

at a frequency of 20 kHz.  Cylindrical specimens with a 20-kHz natural frequency similar 

to those used for the α-β Ti-6Al-4V tests were machined and used (see Figure 41).   
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Test Strategy 

Based on the results of Chapter V, a balanced test strategy was chosen to 

investigate the S-N behavior of the beta annealed Ti-6Al-4V alloy.  The experiment was 

limited to 12 specimens based on specimen availability, testing machine availability, and 

schedule constraints.  This strategy incorporated four stress levels with three specimens 

tested at each level.  The starting stress was set at 400 MPa, as this value was near the 

fatigue strength of the α-β Ti-6Al-4V at 109 cycles (actually 406.4 MPa as shown in 

Chapter IV).  Thus, the fatigue strength of the bimodal α-β Ti-6Al-4V was used as an 

initial estimate for the beta annealed variant.  The experiments of Nalla et al indicated 

that differences between the HCF behavior of the two Ti-6Al-4V variants are not large 

[57], and thus use of the bimodal fatigue strength characteristics as initial estimates for 

the lamellar material was justified.  Interval spacing between stress levels was set at 

20 MPa, which is approximately 1.6 times the standard deviation estimate for the α-β 

variant.  This spacing was intended to provide at least two stress levels with non-zero or 

non-unity probabilities of failure.  If the three specimens tested at 400 MPa resulted in all 

failures, then 400 MPa would be used as the upper limit for stress settings, and the next 

series of tests would be run at 380 MPa.  If the 400 MPa tests were all runouts, then this 

stress level would be the lower limit and the next series of tests would be conducted at 

420 MPa.  If the 400 MPa tests resulted in at least one failure and one survival, then tests 

would be accomplished at both 380 MPa and 420 MPa.  Tests would be conducted in this 

manner until four stress levels were tested with three specimens each.  All tests were 

conducted under fully-reversed (R = -1) loading. 

Experimental Data 

The results of the beta annealed Ti-6Al-4V tests are shown in Table 20.  The P-S 

data can be summarized by the vectors P = (0.3333, 0.3333, 0.6667, 1.0) and S = (360, 

380, 400, 420) where Pi is the probability of failure at stress Si measured in MPa.  Indeed, 

more than two stress levels were tested with non-zero or non-unity probabilities of 

failure; these levels correspond to the tests at 360 MPa, 380 MPa, and 400 MPa.  The 

stress-life (S-N) data for these tests are plotted in Figure 72, where the numbers in 

parentheses indicate the number of multiple runouts. 
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Table 20.  Fatigue data for beta annealed Ti-6Al-4V tests at R = -1. 

Specimen Stress 
(MPa) 109 Result Cycles 

1 400 Failure 5.967E+05 
2 400 Survival 1.000E+09 
3 400 Failure 3.399E+05 
4 420 Failure 2.483E+05 
5 420 Failure 3.316E+05 
6 420 Failure 4.026E+05 
7 380 Failure 5.807E+05 
8 380 Survival 1.000E+09 
9 380 Survival 1.000E+09 
10 360 Failure 4.755E+05 
11 360 Survival 1.000E+09 
12 360 Survival 1.000E+09 

350

360

370

380

390

400

410

420

430

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
N (cycles)

S
 (M

P
a)

 Runouts
(1)

(2)

(2)

 

Figure 72.  Stress-life data for beta annealed Ti-6Al-4V tests at R = -1. 

This S-N data can be plotted along with the 68 data points from the α-β Ti-6Al-

4V tests, as shown in Figure 73 (where “censored” implies a runout).  This plot suggests 

that the beta annealed alloy has similar HCF properties to the bimodal alloy, with 

possibly slightly lower fatigue strength.  Use of the α-β Ti-6Al-4V fatigue strength 

characteristics as initial estimates for the beta annealed tests appears justified. 
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Figure 73.  Stress-life data for Ti-6Al-4V α-β (bimodal) and beta annealed (lamellar) 
microstructures at R = -1. 

Analysis with the RFL Model 

The RFL model described in Chapter V was used to analyze the 12 S-N data 

points for the beta annealed Ti-6Al-4V tests.  The PC-based RFL analysis tool of Annis 

[12] was used to determine the set of RFL parameters which provided the best fit to the 

beta annealed data.  This best fit is shown in Figure 74.  For this fit, the RFL model 

parameters are shown in Table 21.  At first glance, the RFL model does not appear to 

give a very good fit to this data.  It looks as though the S-N data should have a highly 

sloped S-N curve in the 105 to 106 regime with a horizontal fatigue limit which produces 

runouts to 109 cycles.  This type of underlying fatigue behavior produce S-N data very 

similar to the actual beta annealed data.  Recall the scenario #3 from Chapter V, in which 

a linear S-N curve with horizontal fatigue limit was modeled.  One of the data sets for this 

scenario is shown in Figure 75 (simulated in Chapter V) for a test strategy with four 

stress levels using three specimens each.  The simulated data set shows a similar pattern 
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to the experimental data set (Figure 72), lending credibility to the hypothesis that the true 

behavior of the beta annealed Ti-6Al-4V data more closely resembles scenario #3 rather 

than the curve shape depicted by the RFL analysis.  Looking at the α-β Ti-6Al-4V data 

shown in Figure 73, it is clear that the bimodal variant of the alloy displays a sloped 

linear S-N curve followed by a flat fatigue limit region, rather than a gently sweeping 

shape similar to that shown in Figure 74.  Thus, it appears that the beta annealed data are 

not well represented by the RFL model in its current form. 
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Figure 74.  Analysis of beta annealed Ti-6Al-4V data using the RFL model. 

Table 21.  RFL model parameters for best fit to beta annealed Ti-6Al-4V data. 

Parameter Descriptor Value 
β0 S-N curve coefficient 5.904 
β1 S-N curve coefficient -3.988 
σε  Standard deviation in lognormal fatigue life 0.04 
η Weibull location parameter for fatigue limit 387 
β Weibull scale parameter for fatigue limit 24 
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Figure 75.  Simulated data set for a linear S-N curve with horizontal fatigue limit. 

RFL Model Applied to α-β Ti-6Al-4V Data 

Based on the analysis of the beta annealed Ti-6Al-4V data, the RFL model reveals 

a gently sweeping best-fit S-N curve.  There was some question whether this result was a 

function of the model’s inability to adequately fit a curve with a sharp “knee,” or whether 

the best-fit curve just happened to be a gently sweeping shape.  In order to determine if 

this seemingly poor fit was a limitation of the model itself (more specifically, a limitation 

of the assumptions used by the model in its current form), the RFL model was applied to 

the 68 α-β Ti-6Al-4V data points to check its adequacy using a larger data set with an 

obvious knee-shaped S-N curve.  The results of this analysis are shown in Figure 76 and 

Table 22.  Based on this analysis, the RFL model seems to do a very good job modeling 

the highly sloped region in the low-cycle regime, as well as the flat region in the very 

high cycle regime.  This good fit is predicated on the existence of a large number of data 

points in these regimes for the larger data set (68 in this case).  However, the middle of 

the curve where the sloped region transitions to a flat region is still not well represented 

by the model, which cannot account for such a discontinuous change in slope.   
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Figure 76.  RFL model applied to the α-β Ti-6Al-4V data. 

Table 22.  RFL model parameters for best fit to α-β Ti-6Al-4V data. 

Parameter Descriptor Value 
β0 S-N curve coefficient 4.950 
β1 S-N curve coefficient -2.110 
σε  Standard deviation in lognormal fatigue life 0.16 
η Weibull location parameter for fatigue limit 405 
β Weibull scale parameter for fatigue limit 18 

 

In order to better represent S-N curves with a discontinuous change in slope, a 

model with assumptions more closely representing the observed behavior of the fully-

reversed Ti-6Al-4V tests must be specified for this application. 
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Alternative Models for Representing Knee-shaped S-N Curves  

In this section, two models are developed and analyzed for representing the 

material behavior observed from the Ti-6Al-4V testing conducted in support of the 

National HCF S&T Program.  The first model is termed the “hockey stick” model and is 

based on a bilinear shape with a horizontal fatigue limit.  The second model goes beyond 

the linear constraints of the first model and is an adaptation of the Nishijima hyperbolic 

model introduced in Chapter V.  Both models use fatigue strength distributions based on 

real Ti-6Al-4V data analysis and use maximum likelihood methods to generate best-fit 

parameters. 

Bilinear “Hockey Stick” Model 

The bilinear model assumes a constant slope for the S-N curve at lower cycles, 

followed by a transition to a horizontal fatigue limit at a specified number of cycles.  

Thus, there are three S-N model parameters:  (1) m, the slope of the curve at lower cycles, 

which is a negative number and is expressed in units of stress/log(cycles), (2) FLS, the 

fatigue limit strength expressed in units of stress, and (3) N*, the number of cycles at 

which the curve transitions from sloped to flat.  The model is thus specified by the 

following equations (written for S-N curves with linear S axis and logarithmic N axis), 

and is represented by Figure 77: 

 ** for   ,)log(log NNFLSNNmS <+−⋅−=  (51) 

 *for   , NNFLSS ≥=  (52) 
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Figure 77.  Bilinear (hockey stick) S-N model. 
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Nishijima Hyperbolic Model 

A hyperbolic S-N model is presented by Nishijima [63] and described by Hanaki 

et al [36].  The model uses four parameters as shown in Figure 58 from Chapter V.  

These parameters can be varied to create S-N curves ranging from a curved form similar 

to that exhibited by the RFL model to the more bilinear form represented by the hockey 

stick model.  The model is formulated using the following equation, where A, B, C, and E 

are model constants [36]: 

 CBNASES =−−− )log)((  (53) 

Equation 6-3 can be solved in order to evaluate S as a function of logN.  

Representation of S as a function of logN was necessary for use in the proposed model.  

After completing the multiplication on the left side of Equation 53 and then solving the 

resulting quadratic equation, the Nishijima model can be represented by the following: 

 
2

4)())((log2)(log)(log 222 CEBEBNANAEBNA
S

+−+−++++
=  (54) 

Figure 78 illustrates several S-N curve shapes which can be modeled using the 

Nishijima hyperbolic form.   
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Figure 78.  Sample S-N curve shapes using the Nishijima hyperbolic model. 
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Fatigue Strength Distribution 

Unlike the RFL approach which specifies a distribution for the fatigue life at a 

given stress level as well as a distribution for the fatigue limit from which the curvature is 

based, the modeling approach developed for the analysis of the Ti-6Al-4V data (both α-β 

and beta annealed microstructures) used a single probability distribution.  This 

distribution represented the fatigue strength at a specified number of cycles.  The form of 

this distribution was based on the analysis of real Ti-6Al-4V data.  As shown in 

Chapter IV, the residuals of a best-fit bilinear S-N model for the α-β Ti-6Al-4V data were 

well represented by an extreme value distribution.  In order to evaluate these residuals as 

a single distribution, it was necessary to assume that the scatter in fatigue strength was 

constant as a function of cycles.  The plot of the available Ti-6Al-4V data shown in 

Figure 73 supports the assertion that fatigue strength scatter can be adequately modeled 

as constant.  No clear violation of this assumption is in evidence.  The work of Hanaki et 

al supported the assertion that fatigue strength scatter is relatively constant for many 

engineering materials, and thus a distribution of residuals across various fatigue lives can 

be made [36].   

At this point, it is necessary to discuss the mathematics of the extreme value 

distribution in more detail.  The extreme value distribution is also known as the Fisher-

Tippett distribution or log-Weibull distribution [2].  The distribution is governed by two 

parameters:  a location parameter α and a scale parameter β.  The probability density 

function (pdf) and cumulative distribution function (cdf) are shown below [2]: 
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A sample plot of these distribution functions is shown in Figure 79.  The figure shows the 

skewed behavior, with the larger tail in the +x direction. 
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Figure 79.  Probability functions for the extreme value distribution. 

When using this distribution function for the fatigue strength distribution of the 

Ti-6Al-4V data, two considerations must be made.  First, the extreme value distribution 

as defined has a longer tail in the +x direction.  However, residual analysis of the 

experimental data suggests that the fatigue strength distribution is skewed downwards 

towards lower values of stress (see Figure 47 from Chapter IV).  This finding is 

consistent with the assumptions of the RFL model.  Thus, the values from the extreme 

value distribution should be subtracted from (not added to) the S-N baseline model in 

order to represent the fatigue strength scatter about the S-N curve.  The second 

consideration concerns the location parameter α.  There is no need to have a non-zero 

location parameter if the baseline S-N curve is modeled as the mode (most likely 

outcome) and thus corresponds to the peak in fatigue strength pdf.  For α = 0, the extreme 

value pdf has a peak at x = 0.  Thus, the fatigue strength distribution when modeled by 

the extreme value distribution is dependent on only one parameter:  the scale parameter 

β.  Because the Ti-6Al-4V data do not show a significant increase or decrease in fatigue 
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strength scatter as a function of cycles, this location parameter β can be considered a 

constant, independent of the number of cycles.   

With the fatigue strength distribution modeled in this manner based on the 

analysis of real Ti-6Al-4V test data, there are now four parameters for the hockey stick 

model (m, FLS, N*, and β) and five parameters for the hyperbolic model (A, B, C, E, and 

β).  The next section discusses how these two models are fit to real test data. 

Maximum Likelihood Method for Model Fitting 

To determine the best fit for the hockey stick and hyperbolic models, a maximum 

likelihood approach was used.  Each test point from the fatigue testing involves three 

pieces of data:  (1) Si, the stress level, (2) logNi, the logarithm (base 10) of the number of 

cycles tested, and (3) δi, a delta function which equals 1 if the specimen failed and 0 if 

the specimen did not fail (i.e., a runout, or censored data).  The number of specimens 

tested is denoted by n.  The model parameters are denoted by θ.  Thus, for the hockey 

stick model, θ = (m, FLS, N*, β), and for the hyperbolic model θ = (A, B, C, E, β).  Each 

data point also has a corresponding Ŝi which represents the point on the modeled S-N 

curve corresponding to logNi.  Thus, given θ and logNi, Equations 51 and 52 are used to 

determine Ŝi for each test point using the hockey stick model, and Equation 54 is used for 

the hyperbolic model.  Now, xi is defined by the following equation: 

 
β

ii
i

SSx
ˆ−

−=  (57) 

Thus, xi represents a scaled residual between the true value of stress as tested (Si) and the 

corresponding point on the modeled S-N curve given the specified parameters (Ŝi).  It is 

scaled by β, the scale parameter of the extreme value distribution representing fatigue 

strength scatter.  The minus sign in Equation 57 is used because a stress value greater 

than its modeled companion represents a negative residual since the extreme value 

distribution is positively skewed downwards to lower stress values. 

With the problem as defined thus far, the maximum likelihood method uses a 

likelihood function of the form: 
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By the property of logarithms, the likelihood function can be maximized by 

maximizing its logarithm, so that the following log-likelihood function is used: 
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where 

 )],(1log[)1()],(log[)( θδθδθ iSiiSii xFxf −−+=L . (62) 

With this formulation in place, the test data can be plotted and initial estimates for 

the S-N baseline model parameters and distribution scale factor can be made based on a 

reasonable fit.  The log-likelihood function is then maximized by methodically adjusting 

these parameters until improvements to the fit are no longer possible (or gains are so 

marginal that the fit is considered “good enough”). 

Analysis of α-β Ti-6Al-4V Data 

The 68 data points associated with the fully-reversed α-β tests were first 

investigated using the bilinear model with the extreme value distribution for fatigue 

strength.  The maximum likelihood analysis is shown in Figure 80.  The best-fit 

parameter settings are shown in the boxes at the top left of the figure.  The log-likelihood 

function is shown at the top right.  Using the results of this analysis, a P-S-N curve can be 

drawn based on the percentiles of the fatigue strength distribution at each given number 

of cycles.  This P-S-N curve is shown in Figure 81.  Sensitivity plots based on the final 

parameter settings are shown in Figure 82. 
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alpha = 0
beta = 13.5

FLS = 418 base e base 1000
N* = 1.80E+05 logN* = 5.255 -192.055 -27.8029
m = -227

i Si Ni LogNi Runout Ni >= N* Model Si_hat - Si xi pdf cdf pdf or cdf base e base 1000
1 774.03 5.319E+03 3.73 0 0 765.18 -8.85 -0.66 0.02079 0.14577 0.02079 -3.873 -0.561
2 729.08 6.737E+03 3.83 0 0 741.88 12.80 0.95 0.01948 0.67888 0.01948 -3.939 -0.570
3 699.84 9.700E+03 3.99 0 0 705.95 6.11 0.45 0.02494 0.52941 0.02494 -3.691 -0.534
4 586.49 2.020E+04 4.31 0 0 633.64 47.15 3.49 0.00219 0.97003 0.00219 -6.125 -0.887
5 546.29 4.854E+04 4.69 0 0 547.21 0.92 0.07 0.02719 0.39288 0.02719 -3.605 -0.522
6 534.36 3.777E+04 4.58 0 0 571.94 37.58 2.78 0.00430 0.94007 0.00430 -5.448 -0.789
7 499.89 6.823E+04 4.83 0 0 513.64 13.75 1.02 0.01864 0.69687 0.01864 -3.982 -0.576
8 482.65 1.034E+05 5.01 0 0 472.70 -9.95 -0.74 0.01915 0.12369 0.01915 -3.956 -0.573
9 465.41 8.830E+04 4.95 0 0 488.21 22.80 1.69 0.01138 0.83134 0.01138 -4.476 -0.648
10 448.17 1.125E+05 5.05 0 0 464.33 16.16 1.20 0.01655 0.73921 0.01655 -4.102 -0.594
11 430.94 1.833E+05 5.26 0 1 418.00 -12.94 -0.96 0.01424 0.07369 0.01424 -4.252 -0.616
12 430 3.800E+05 5.58 0 1 418.00 -12.00 -0.89 0.01582 0.08782 0.01582 -4.146 -0.600
13 420.6 4.963E+04 4.70 0 0 545.01 124.41 9.22 0.00001 0.99990 0.00001 -11.819 -1.711
14 420.6 4.069E+05 5.61 0 1 418.00 -2.60 -0.19 0.02672 0.29749 0.02672 -3.622 -0.524
15 420.6 5.913E+05 5.77 0 1 418.00 -2.60 -0.19 0.02672 0.29749 0.02672 -3.622 -0.524
16 420.6 7.050E+06 6.85 0 1 418.00 -2.60 -0.19 0.02672 0.29749 0.02672 -3.622 -0.524
17 420 7.200E+05 5.86 0 1 418.00 -2.00 -0.15 0.02694 0.31359 0.02694 -3.614 -0.523
18 420 1.000E+06 6.00 0 1 418.00 -2.00 -0.15 0.02694 0.31359 0.02694 -3.614 -0.523
19 413.7 2.058E+05 5.31 0 1 418.00 4.30 0.32 0.02603 0.48325 0.02603 -3.648 -0.528
20 413.7 3.248E+06 6.51 0 1 418.00 4.30 0.32 0.02603 0.48325 0.02603 -3.648 -0.528
21 413.7 6.554E+06 6.82 0 1 418.00 4.30 0.32 0.02603 0.48325 0.02603 -3.648 -0.528
22 413.7 1.610E+05 5.21 0 0 429.02 15.32 1.13 0.01727 0.72500 0.01727 -4.059 -0.588
23 413.7 8.746E+06 6.94 0 1 418.00 4.30 0.32 0.02603 0.48325 0.02603 -3.648 -0.528
24 413.7 2.400E+06 6.38 0 1 418.00 4.30 0.32 0.02603 0.48325 0.02603 -3.648 -0.528
25 410 3.000E+05 5.48 0 1 418.00 8.00 0.59 0.02356 0.57528 0.02356 -3.748 -0.543
26 410 5.700E+06 6.76 0 1 418.00 8.00 0.59 0.02356 0.57528 0.02356 -3.748 -0.543
27 410 6.100E+06 6.79 0 1 418.00 8.00 0.59 0.02356 0.57528 0.02356 -3.748 -0.543
28 410 7.100E+06 6.85 0 1 418.00 8.00 0.59 0.02356 0.57528 0.02356 -3.748 -0.543
29 410 2.900E+07 7.46 0 1 418.00 8.00 0.59 0.02356 0.57528 0.02356 -3.748 -0.543
30 400 9.000E+06 6.95 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
31 400 1.600E+08 8.20 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
32 400 6.000E+08 8.78 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
33 400 2.900E+06 6.46 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
34 400 1.800E+05 5.26 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
35 400 6.000E+06 6.78 0 1 418.00 18.00 1.33 0.01500 0.76828 0.01500 -4.200 -0.608
36 399.91 1.099E+06 6.04 0 1 418.00 18.09 1.34 0.01493 0.76963 0.01493 -4.205 -0.609
37 393.02 3.634E+05 5.56 0 1 418.00 24.98 1.85 0.00995 0.85455 0.00995 -4.610 -0.667
38 393.02 4.490E+07 7.65 0 1 418.00 24.98 1.85 0.00995 0.85455 0.00995 -4.610 -0.667
39 390 1.100E+08 8.04 0 1 418.00 28.00 2.07 0.00821 0.88190 0.00821 -4.802 -0.695
40 390 7.100E+05 5.85 0 1 418.00 28.00 2.07 0.00821 0.88190 0.00821 -4.802 -0.695
41 379.23 4.750E+05 5.68 0 1 418.00 38.77 2.87 0.00396 0.94498 0.00396 -5.531 -0.801
42 379.23 1.835E+06 6.26 0 1 418.00 38.77 2.87 0.00396 0.94498 0.00396 -5.531 -0.801
43 420 1.000E+09 9.00 1 1 418.00 -2.00 -0.15 0.02694 0.31359 0.31359 -1.160 -0.168
44 417.15 1.000E+08 8.00 1 1 418.00 0.85 0.06 0.02720 0.39103 0.39103 -0.939 -0.136
45 417.15 1.000E+08 8.00 1 1 418.00 0.85 0.06 0.02720 0.39103 0.39103 -0.939 -0.136
46 413.7 1.000E+07 7.00 1 1 418.00 4.30 0.32 0.02603 0.48325 0.48325 -0.727 -0.105
47 413.7 1.000E+08 8.00 1 1 418.00 4.30 0.32 0.02603 0.48325 0.48325 -0.727 -0.105
48 413.7 1.000E+08 8.00 1 1 418.00 4.30 0.32 0.02603 0.48325 0.48325 -0.727 -0.105
49 410 1.000E+09 9.00 1 1 418.00 8.00 0.59 0.02356 0.57528 0.57528 -0.553 -0.080
50 410 1.000E+09 9.00 1 1 418.00 8.00 0.59 0.02356 0.57528 0.57528 -0.553 -0.080
51 410 1.000E+09 9.00 1 1 418.00 8.00 0.59 0.02356 0.57528 0.57528 -0.553 -0.080
52 406.8 1.000E+08 8.00 1 1 418.00 11.20 0.83 0.02089 0.64648 0.64648 -0.436 -0.063
53 406.8 1.000E+08 8.00 1 1 418.00 11.20 0.83 0.02089 0.64648 0.64648 -0.436 -0.063
54 400 1.000E+09 9.00 1 1 418.00 18.00 1.33 0.01500 0.76828 0.76828 -0.264 -0.038
55 400 1.000E+09 9.00 1 1 418.00 18.00 1.33 0.01500 0.76828 0.76828 -0.264 -0.038
56 400 1.000E+09 9.00 1 1 418.00 18.00 1.33 0.01500 0.76828 0.76828 -0.264 -0.038
57 400 1.000E+09 9.00 1 1 418.00 18.00 1.33 0.01500 0.76828 0.76828 -0.264 -0.038
58 400 1.000E+08 8.00 1 1 418.00 18.00 1.33 0.01500 0.76828 0.76828 -0.264 -0.038
59 399.91 1.000E+07 7.00 1 1 418.00 18.09 1.34 0.01493 0.76963 0.76963 -0.262 -0.038
60 398.19 1.000E+09 9.00 1 1 418.00 19.81 1.47 0.01356 0.79412 0.79412 -0.231 -0.033
61 393.02 1.000E+08 8.00 1 1 418.00 24.98 1.85 0.00995 0.85455 0.85455 -0.157 -0.023
62 390 1.000E+08 8.00 1 1 418.00 28.00 2.07 0.00821 0.88190 0.88190 -0.126 -0.018
63 390 1.000E+08 8.00 1 1 418.00 28.00 2.07 0.00821 0.88190 0.88190 -0.126 -0.018
64 380 1.000E+09 9.00 1 1 418.00 38.00 2.81 0.00418 0.94184 0.94184 -0.060 -0.009
65 380 1.000E+09 9.00 1 1 418.00 38.00 2.81 0.00418 0.94184 0.94184 -0.060 -0.009
66 380 1.000E+09 9.00 1 1 418.00 38.00 2.81 0.00418 0.94184 0.94184 -0.060 -0.009
67 380 1.000E+08 8.00 1 1 418.00 38.00 2.81 0.00418 0.94184 0.94184 -0.060 -0.009
68 344.75 1.000E+09 9.00 1 1 418.00 73.25 5.43 0.00032 0.99561 0.99561 -0.004 -0.001

Log(Likelihood)

Sum of log-likelihoods

 

Figure 80.  Maximum likelihood analysis of fully-reversed α-β Ti-6Al-4V data using 
the bilinear model with extreme value distribution for fatigue strength. 
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Figure 81.  P-S-N plot of α-β Ti-6Al-4V data using the bilinear model with extreme 
value distribution for fatigue strength. 

When compared to the RFL model fit shown in Figure 76, the P-S-N plot of 

Figure 81 appears to be a superior fit.  The modeled fit accounts for most of the behavior 

observed from the Ti-6Al-4V testing.  Namely, the model illustrates the highly sloped 

region at lower cycles, the flat region at higher cycles, the sharp transition between the 

two regions, along with the skewed scatter towards lower stresses, and the relatively 

constant scatter in fatigue strength as a function of fatigue life.  If one looks at the failure 

points only, 34 of the 42 (81.0%) failure points lie within the 10th and 90th percentiles (an 

80% band).  Likewise, 39 of the points (92.9%) lie within the 5th and 95th percentiles 

(90% band).  Finally, 41 of the points (97.6%) lie within the 1st and 99th percentiles (98% 

band).  Thus, the modeled percentile bands match well with experimental data.  One 

attribute of the RFL model which is not captured by this modeling approach is the 

lognormal distribution in fatigue life for a given stress level.  Looking at a horizontal line 

through the sloped region of the curve, the percentile lines about the median fit are not 

symmetrical, thus indicating that the fatigue life is not normally distributed along the 

logarithmic axis. 
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Figure 82.  Sensitivity plots based on log-likelihood for parameter settings using the 
bilinear model for the α-β Ti-6Al-4V data. 

The hyperbolic model was also applied to the α-β Ti-6Al-4V data in order to 

improve upon the fit using the bilinear model.  Interestingly, the best fit accomplished 

resulted in a log-likelihood (base 1000) of -29.263, compared to the value of -27.746 

using the bilinear model.  Thus, the best fit with the 5-parameter hyperbolic model was 

not quite as good as that of the 4-parameter bilinear model.  The results of the hyperbolic 

model analysis are shown in Figure 83.  The P-S-N plot of the α-β Ti-6Al-4V data is 
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alpha = 0
beta = 16.0
A = -311
B = 1970 base e base 1000
C = 1950 -202.140 -29.2627
E = 414

i Si Ni LogNi Runout Model Si_hat - Si xi pdf cdf pdf or cdf base e base 1000
1 774.03 5.319E+03 3.73 0 816.12 42.09 2.63 0.00419 0.93048 0.00419 -5.475 -0.793
2 729.08 6.737E+03 3.83 0 784.61 55.53 3.47 0.00188 0.96938 0.00188 -6.274 -0.908
3 699.84 9.700E+03 3.99 0 736.17 36.33 2.27 0.00582 0.90188 0.00582 -5.146 -0.745
4 586.49 2.020E+04 4.31 0 639.68 53.19 3.32 0.00217 0.96465 0.00217 -6.133 -0.888
5 546.29 4.854E+04 4.69 0 529.51 -16.78 -1.05 0.01028 0.05764 0.01028 -4.578 -0.663
6 534.36 3.777E+04 4.58 0 559.88 25.52 1.60 0.01035 0.81640 0.01035 -4.571 -0.662
7 499.89 6.823E+04 4.83 0 491.73 -8.16 -0.51 0.01968 0.18908 0.01968 -3.928 -0.569
8 482.65 1.034E+05 5.01 0 456.47 -26.18 -1.64 0.00189 0.00588 0.00189 -6.273 -0.908
9 465.41 8.830E+04 4.95 0 467.95 2.54 0.16 0.02272 0.42599 0.02272 -3.785 -0.548
10 448.17 1.125E+05 5.05 0 451.32 3.15 0.20 0.02258 0.43996 0.02258 -3.791 -0.549
11 430.94 1.833E+05 5.26 0 433.45 2.51 0.16 0.02273 0.42528 0.02273 -3.784 -0.548
12 430 3.800E+05 5.58 0 424.28 -5.72 -0.36 0.02139 0.23947 0.02139 -3.845 -0.557
13 420.6 4.963E+04 4.70 0 526.90 106.30 6.64 0.00008 0.99870 0.00008 -9.418 -1.363
14 420.6 4.069E+05 5.61 0 423.83 3.23 0.20 0.02256 0.44167 0.02256 -3.792 -0.549
15 420.6 5.913E+05 5.77 0 421.90 1.30 0.08 0.02292 0.39767 0.02292 -3.776 -0.547
16 420.6 7.050E+06 6.85 0 417.38 -3.22 -0.20 0.02250 0.29434 0.02250 -3.794 -0.549
17 420 7.200E+05 5.86 0 421.15 1.15 0.07 0.02293 0.39427 0.02293 -3.775 -0.547
18 420 1.000E+06 6.00 0 420.17 0.17 0.01 0.02299 0.37173 0.02299 -3.773 -0.546
19 413.7 2.058E+05 5.31 0 431.16 17.46 1.09 0.01500 0.71480 0.01500 -4.200 -0.608
20 413.7 3.248E+06 6.51 0 418.12 4.42 0.28 0.02220 0.46833 0.02220 -3.807 -0.551
21 413.7 6.554E+06 6.82 0 417.44 3.74 0.23 0.02242 0.45307 0.02242 -3.798 -0.550
22 413.7 1.610E+05 5.21 0 436.68 22.98 1.44 0.01172 0.78835 0.01172 -4.447 -0.644
23 413.7 8.746E+06 6.94 0 417.22 3.52 0.22 0.02248 0.44813 0.02248 -3.795 -0.549
24 413.7 2.400E+06 6.38 0 418.51 4.81 0.30 0.02207 0.47686 0.02207 -3.814 -0.552
25 410 3.000E+05 5.48 0 426.22 16.22 1.01 0.01578 0.69565 0.01578 -4.149 -0.601
26 410 5.700E+06 6.76 0 417.55 7.55 0.47 0.02089 0.53598 0.02089 -3.868 -0.560
27 410 6.100E+06 6.79 0 417.50 7.50 0.47 0.02092 0.53476 0.02092 -3.867 -0.560
28 410 7.100E+06 6.85 0 417.37 7.37 0.46 0.02098 0.53218 0.02098 -3.864 -0.559
29 410 2.900E+07 7.46 0 416.54 6.54 0.41 0.02137 0.51457 0.02137 -3.846 -0.557
30 400 9.000E+06 6.95 0 417.20 17.20 1.07 0.01517 0.71080 0.01517 -4.189 -0.606
31 400 1.600E+08 8.20 0 415.96 15.96 1.00 0.01594 0.69148 0.01594 -4.139 -0.599
32 400 6.000E+08 8.78 0 415.66 15.66 0.98 0.01613 0.68673 0.01613 -4.127 -0.597
33 400 2.900E+06 6.46 0 418.26 18.26 1.14 0.01451 0.72653 0.01451 -4.233 -0.613
34 400 1.800E+05 5.26 0 433.85 33.85 2.12 0.00668 0.88642 0.00668 -5.009 -0.725
35 400 6.000E+06 6.78 0 417.51 17.51 1.09 0.01497 0.71552 0.01497 -4.202 -0.608
36 399.91 1.099E+06 6.04 0 419.93 20.02 1.25 0.01343 0.75120 0.01343 -4.310 -0.624
37 393.02 3.634E+05 5.56 0 424.60 31.58 1.97 0.00756 0.87031 0.00756 -4.885 -0.707
38 393.02 4.490E+07 7.65 0 416.36 23.34 1.46 0.01152 0.79253 0.01152 -4.464 -0.646
39 390 1.100E+08 8.04 0 416.06 26.06 1.63 0.01008 0.82186 0.01008 -4.597 -0.666
40 390 7.100E+05 5.85 0 421.20 31.20 1.95 0.00771 0.86736 0.00771 -4.865 -0.704
41 379.23 4.750E+05 5.68 0 422.93 43.70 2.73 0.00381 0.93694 0.00381 -5.569 -0.806
42 379.23 1.835E+06 6.26 0 418.91 39.68 2.48 0.00481 0.91968 0.00481 -5.337 -0.773
43 420 1.000E+09 9.00 1 415.57 -4.43 -0.28 0.02204 0.26733 0.26733 -1.319 -0.191
44 417.15 1.000E+08 8.00 1 416.09 -1.06 -0.07 0.02294 0.34347 0.34347 -1.069 -0.155
45 417.15 1.000E+08 8.00 1 416.09 -1.06 -0.07 0.02294 0.34347 0.34347 -1.069 -0.155
46 413.7 1.000E+07 7.00 1 417.12 3.42 0.21 0.02251 0.44605 0.44605 -0.807 -0.117
47 413.7 1.000E+08 8.00 1 416.09 2.39 0.15 0.02275 0.42258 0.42258 -0.861 -0.125
48 413.7 1.000E+08 8.00 1 416.09 2.39 0.15 0.02275 0.42258 0.42258 -0.861 -0.125
49 410 1.000E+09 9.00 1 415.57 5.57 0.35 0.02178 0.49354 0.49354 -0.706 -0.102
50 410 1.000E+09 9.00 1 415.57 5.57 0.35 0.02178 0.49354 0.49354 -0.706 -0.102
51 410 1.000E+09 9.00 1 415.57 5.57 0.35 0.02178 0.49354 0.49354 -0.706 -0.102
52 406.8 1.000E+08 8.00 1 416.09 9.29 0.58 0.01999 0.57142 0.57142 -0.560 -0.081
53 406.8 1.000E+08 8.00 1 416.09 9.29 0.58 0.01999 0.57142 0.57142 -0.560 -0.081
54 400 1.000E+09 9.00 1 415.57 15.57 0.97 0.01619 0.68525 0.68525 -0.378 -0.055
55 400 1.000E+09 9.00 1 415.57 15.57 0.97 0.01619 0.68525 0.68525 -0.378 -0.055
56 400 1.000E+09 9.00 1 415.57 15.57 0.97 0.01619 0.68525 0.68525 -0.378 -0.055
57 400 1.000E+09 9.00 1 415.57 15.57 0.97 0.01619 0.68525 0.68525 -0.378 -0.055
58 400 1.000E+08 8.00 1 416.09 16.09 1.01 0.01586 0.69359 0.69359 -0.366 -0.053
59 399.91 1.000E+07 7.00 1 417.12 17.21 1.08 0.01515 0.71107 0.71107 -0.341 -0.049
60 398.19 1.000E+09 9.00 1 415.57 17.38 1.09 0.01505 0.71352 0.71352 -0.338 -0.049
61 393.02 1.000E+08 8.00 1 416.09 23.07 1.44 0.01167 0.78937 0.78937 -0.237 -0.034
62 390 1.000E+08 8.00 1 416.09 26.09 1.63 0.01006 0.82215 0.82215 -0.196 -0.028
63 390 1.000E+08 8.00 1 416.09 26.09 1.63 0.01006 0.82215 0.82215 -0.196 -0.028
64 380 1.000E+09 9.00 1 415.57 35.57 2.22 0.00607 0.89737 0.89737 -0.108 -0.016
65 380 1.000E+09 9.00 1 415.57 35.57 2.22 0.00607 0.89737 0.89737 -0.108 -0.016
66 380 1.000E+09 9.00 1 415.57 35.57 2.22 0.00607 0.89737 0.89737 -0.108 -0.016
67 380 1.000E+08 8.00 1 416.09 36.09 2.26 0.00590 0.90048 0.90048 -0.105 -0.015
68 344.75 1.000E+09 9.00 1 415.57 70.82 4.43 0.00074 0.98811 0.98811 -0.012 -0.002

Log(Likelihood)

Sum of log-likelihoods

 

Figure 83.  Maximum likelihood analysis of fully-reversed α-β Ti-6Al-4V data using 
the hyperbolic model with extreme value distribution for fatigue strength. 
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shown in Figure 84.  For this fit, 83.3% (35/42) of the failures fall within the 80% band, 

90.5% (38/42) fall within the 90% band, and 95.2% (40/42) fall within the 98% band, as 

given by the percentile lines. 
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Figure 84.  P-S-N plot of α-β Ti-6Al-4V data using the hyperbolic model with 
extreme value distribution for fatigue strength. 

A comparison between the outputs for each model as applied to the α-β Ti-6Al-

4V data is shown in Table 23.  Recall that the modified staircase analysis of this alloy 

based on the small-sample testing from Chapter IV showed a median fatigue strength of 

406.4 MPa at 109 cycles. 

Table 23.  Comparison of modeled output using the RFL, bilinear, and hyperbolic 
models for the α-B Ti-6Al-4V data. 

Parameter (in MPa) RFL Bilinear Hyperbolic 
Median fatigue strength at 109 398 413 410 

90% lower bound fatigue strength at 109 359 388 380 
95% lower bound fatigue strength at 109 344 378 369 
99% lower bound fatigue strength at 109 315 356 343 
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Beta Annealed Ti-6Al-4V Analysis 

At this point, the bilinear and hyperbolic models have been shown to provide a 

better fit to the α-β Ti-6Al-4V data when compared to the RFL model.  In addition, the 

beta annealed Ti-6Al-4V data has been shown to reasonably result from an S-N curve 

with a highly sloped region at lower cycles and fatigue limit at higher cycles (similar to 

the α-β behavior).  This assertion is also supported by the work of Boyer et al, who 

showed that lamellar Ti-6Al-4V S-N curve shapes were quite similar in shape to those of 

the bimodal alloy [19].  Thus, the beta annealed data should also be fit better with the 

bilinear or hyperbolic models.  These models were therefore applied to the beta annealed 

data in order to characterize the fatigue behavior. 

Bilinear Model 

The best-fit parameter settings for the bilinear model were:  m = -84 

MPa/log(cycle), FLS = 402 MPa, N* = 4.8 x 105 cycles, and β = 12.1.  The P-S-N plot 

based on this model fit is shown in Figure 85.  Based on this fit, the median fatigue 

strength at 109 cycles is 397.5 MPa, with a 95% lower bound of 366.0 MPa. 
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Figure 85.  Bilinear model with extreme value distribution applied to beta annealed 
Ti-6Al-4V data. 
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Hyperbolic Model 

The best-fit hyperbolic model resulted from parameter settings:  A = -325, 

B = 2170, C = 250, E = 401, and β = 13.5.  The P-S-N plot based on this model fit is 

shown in Figure 86.  This fit yields a median fatigue strength at 109 cycles equal to 

396.2 MPa, with a 95% lower bound at 361.2 MPa. 
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Figure 86.  Hyperbolic model with extreme value distribution applied to beta 
annealed Ti-6Al-4V data. 

Quantal Response Analysis 

Another analysis avenue would be to use the P-S data from the beta annealed tests 

and bootstrap these results in accordance with the method proposed in Chapter III.  

However, there is no lower bound stress value for which only survivals resulted from 

testing, so an assumption must be made.  Namely, the 340 MPa stress level must be 

assumed to have a probability of failure of 0.  When this assumption is made, the P-S 

data can be summarized by the vectors P = (0, 0.3333, 0.3333, 0.6667, 1.0) and S = (340, 

360, 380, 400, 420) where Pi is the probability of failure at stress Si measured in MPa.  
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The staircase bootstrap algorithm was applied to this data.  According to the results of 

Chapter III, the estimate for fatigue strength standard deviation using 5-level data should 

be based on the mean Svensson-Lorén standard deviation from the bootstrapped 

distribution.  This estimate is 25.7 MPa based on this data set, along with a mean fatigue 

strength of 387.0 from the bootstrapped distribution.  Assuming normality, this data 

correlates to a 95% lower bound of 344.7 MPa for fatigue strength at 109 cycles.  Of 

course, the fatigue strength distribution was already shown to be better represented by an 

extreme value distribution for the α-β data, and thus an assumption of normality for the 

beta annealed data may lead to errors.  The quantal response analysis is really not 

necessary given that the S-N data can be used by the models previously described to 

generate P-S-N plots from which P-S data can be gleaned. 

Summary 

The objective of this chapter was to characterize the fatigue behavior of the beta 

annealed Ti-6Al-4V alloy under fully-reversed loading at very high cycles.  A 12-

specimen experiment was conducted using the 20-kHz ultrasonic test machine, with a 

runout limit of 109 cycles.  Stress-life data from this experiment was analyzed using the 

RFL model.  The model did not appear to represent the small-sample data very well.  The 

RFL tool was applied to the larger sample set of α-β Ti-6Al-4V data and was shown to 

poorly fit data with a sharp transition between sloped and flat S-N behavior.  A simple 

bilinear model was proposed to better represent this S-N behavior.  Analysis of residuals 

(i.e., differences between actual failure points and the mean curve fit) from α-β testing 

showed that the extreme value distribution represented the scatter in fatigue strength quite 

well.  Thus, a probabilistic S-N model was proposed using the bilinear model as a 

baseline with fatigue strength distributed according to the extreme value distribution.  

Parameters for the best fit using this model were determined using the maximum 

likelihood method.  This model provided a good fit to the α-β data.  A second model 

using the Nishijima hyperbolic S-N model as a baseline was also proposed and analyzed, 

also providing a good fit to the α-β data.  These models were then applied to the beta 

annealed data.  Based on this analysis, the fatigue strength of the beta annealed alloy at 

109 cycles is approximately 397 MPa, about 2.5% lower than the α-β alloy.   
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VII. SUMMARY AND CONCLUSIONS 

In this chapter, the problem is restated and the methods and findings of this research are 

summarized.  In addition, areas for further research are identified and discussed.  Finally, 

the research conclusions are presented. 

Problem Restatement 

The primary goal of this research was to provide a means of characterizing the 

fatigue strength at a specified number of cycles.  The method proposed for such a purpose 

was to demonstrate the following characteristics as best as possible: 

• Efficiency – the capability of the test approach to estimate parameters with 

relatively few specimens.  

• Accuracy – the capability of the test approach to estimate both fatigue strength 

central tendency and dispersion while minimizing errors. 

• Simplicity – the ease of use of the method in terms of both experimental and 

analytical (or computational) requirements. 

• Objectivity – the capability of the method to be defendable, repeatable, and 

unbiased through the mitigation of subjective inputs. 

• Robustness – the ability of the method to be applied to various materials with 

differing underlying fatigue strength behaviors. 

A method possessing these properties would be well-served for use in ultra high 

cycle fatigue testing where there is generally few data for many aerospace materials, and 

may be considered for use in the development of high cycle fatigue design guidance 

provided by the Department of Defense to engine manufacturers, or other such 

applications.  Such a method would require experimental validation to demonstrate its 

utility, which would provide a testing opportunity to explore material behavior in the 

gigacycle regime.  A survey of existing methods, to include recent research related to 

high cycle fatigue testing methods, was a prerequisite for such an effort and led to the 

investigations of the staircase test and random fatigue limit (RFL) model.   
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Summary of Findings 

The primary findings of this research are broken into four sections:  (1) the 

investigation of the staircase method, (2) the investigation of α-β Ti-6Al-4V in the 

gigacycle regime, (3) the investigation of test strategies using the random fatigue limit 

(RFL) model, and (4) the investigation of very high cycle fatigue behavior of beta 

annealed Ti-6Al-4V and development of analysis models to characterize Ti-6Al-4V 

behavior using maximum likelihood methods.  These findings are discussed in each of 

the following four sections. 

Investigation of the Staircase Method 

The staircase method was selected as one of the most promising methods for 

analysis of high cycle fatigue data for several reasons.  To start, the test is simple in terms 

of test protocol.  It is also widely used in industry and academia and has been a part of 

testing guidance for some time.  The test has also proven to be extremely accurate in 

characterizing the mean fatigue strength at a specified number of cycles using very few 

specimens.  Although the analysis methods were developed in the 1950s for explosives 

testing, there has been a flurry of recent activity from 1998 to the present [20; 34; 41; 73; 

84-85] in exploring the ability of the staircase test to characterize the scatter in fatigue 

strength.  None of these recent efforts has appeared to result in a complete 

characterization of the staircase test’s ability to estimate fatigue strength standard 

deviation as a function of staircase parameter settings (step size, starting stress, and 

number of specimens).  In addition, these efforts have not as yet demonstrated an ability 

to both improve estimates in an average sense as well as minimize scatter in results.    

A major part of this research effort was the simulation-based characterization of 

the staircase test’s ability to estimate standard deviation.  The staircase test was modeled 

and simulated using assumed normal distributions to represent true fatigue strength.  

Although this assumption seems overly restrictive, stress transformations may be used to 

better approach normality for those materials with non-normal fatigue strength behavior.  

The simulation work produced a complete picture of the bias inherent in standard 

deviation estimation using the Dixon-Mood analysis method for staircase test data (see 

Figure 25), as a function of step size (s ≥ 0.1σ) and sample size (N ≥ 8).  This bias picture 
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showed an unbiased region in the 1.6−1.75σ region, which uses significantly larger steps 

than currently recommended in the literature.  In addition, the results showed that starting 

a staircase test slightly below or above the true mean fatigue strength may mitigate some 

of the underestimating bias inherent in the analysis method.  This result follows from the 

fact that starting too low or too high may allow more stress levels with non-zero or non-

unity probabilities of failure, which tends to increase standard deviation estimates.  The 

characterization of standard deviation bias led to the development of a non-linear 

correction factor (Equation 63) which accounted for both step size and the number of 

specimens.  In an average sense, this correction factor produced less biased results than 

traditional staircase analysis.  However, the correction factor also suffered from an 

increase in scatter of results.   
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where: 

 N is the number of specimens and s is the step size, 

 A, B, and m are constants dependent on sample size as shown in Table 7, 

 σDM is the fatigue strength standard deviation derived from Dixon-Mood analysis, 

 σPC is the corrected standard deviation estimate. 

The increased scatter in staircase results due to bias correction was addressed 

through the use of bootstrapping.  A data-based algorithm was proposed which would 

utilize the P-S data (probability of failure associated with each stress level) to perform 

repeated “virtual staircases” on the data, each with its own estimate of corrected fatigue 

strength standard deviation.  In this manner, instead of a staircase test producing a single 

estimate for standard deviation, it would produce a distribution for standard deviation 

from which a relevant statistic could be used as the estimate for standard deviation.  The 

bootstrapping algorithm was found to significantly reduce the scatter in both uncorrected 

and corrected standard deviation estimates.  This bootstrapping algorithm thus allowed 

use of the proposed bias correction method without significantly increased scatter relative 

to the uncorrected method without bootstrapping.  The code for the algorithm is found in 



 

 172 

Appendix D.  Rules for use of the bootstrapping distribution were developed based on an 

analysis of simulated staircase data.  These rules are summarized as follows: 

• P-S data must be bounded by stress levels with P(failure) = 0 and P(failure) = 1. 

• If the staircase resulted in just two stress levels, then the staircase results are not 

meaningful and should not be used. 

• If the test results in three stress levels, bootstrapping is generally ineffective and 

the non-bootstrapped Svensson-Lorén corrected standard deviation estimate may 

be used to estimate the true standard deviation.  However, it is recommended that 

additional testing be conducted to ensure four or more stress levels. 

• If the test results in four stress levels, the 60th- and 65th-percentile points of the 

bootstrap distribution using the proposed non-linear correction for standard 

deviation should be averaged to estimate the true standard deviation for larger 

step sizes.  If the step size is known to be on the order of standard deviation or 

smaller, then the 60th- and 65th-percentile points of the bootstrap distribution for 

Svensson-Lorén corrected standard deviation should be averaged to estimate the 

true standard deviation. 

• If the test results in five or more stress levels, then the mean of the Svensson-

Lorén bootstrap distribution should be used to estimate the true standard 

deviation. 

The use of an iterated staircase algorithm was also considered, in which a single 

staircase test would be divided into a series of smaller subtests and each subtest would 

use the results of the previous subtest as initial estimates.  Investigation showed that such 

an approach did not reduce the scatter in results, but may in fact increase such scatter.  

Thus, the iterative staircase algorithm was not recommended for use. 

Experimental Investigation of α-β Ti-6Al-4V 

With a test method proposed for investigation of fatigue strength at a specified 

number of cycles, the next step was an experimental validation of this method.  The 

National HCF Science & Technology Program collected a significant amount of data 
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points for two-phase Ti-6Al-4V specimens.  In addition, AFRL/MLLM already had an 

ongoing Ti-6Al-4V test program using a 20-kHz ultrasonic fatigue testing machine 

capable of testing in the gigacycle regime.  Thus, it was a fairly obvious choice to utilize 

these data and test program to provide validation of the modified staircase method. 

Twenty data points from two separate 10-specimen staircase tests were collected 

by AFRL/MLLM as part of their research program.  These staircases used a 10 MPa step 

under fully-reversed loading.  Data from these tests are shown in Figure 87.  The 

objective of this phase was to use these data points to apply the modified staircase 

method to a small-sample set, and then use the larger pool of Ti-6Al-4V data from the 

National HCF S&T Program to validate results.  AFRL/MLLM’s work already 

demonstrated that there were no observable differences between the two sets of data due 

to testing at different frequencies.  Only tests conducted under fully-reversed conditions 

would be compared. 
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Figure 87.  Initial staircase data for 109-limited tests of α-β Ti-6Al-4V under R = -1 
loading using the 20 stress-relief annealed (SRA) specimens (numbers in 

parentheses indicate number of runouts). 

Investigation of the 20 data points showed that it would not be possible to create 

one seamless staircase using 10 MPa steps.  The data was reworked using a 20 MPa step 
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size using the conditions that a failure at a particular stress level would also be a failure at 

any higher stress level, and a survival at a particular stress level would also be a survival 

at any lower stress level.  This reorganization of the data also had the advantage of 

increasing the step size, which was shown in the staircase investigation to produce less 

biased results so long as more than three stress levels still result.  In fact, the data did fit 

into four stress levels, although three additional tests were necessary to round out the 

complete staircase, as shown in Figure 88.  These tests were subsequently conducted and 

resulted in runouts, thus completing a 23-specimen staircase with 20 MPa step. 
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Figure 88.  AFRL/MLLM’s α-β Ti-6Al-4V data reworked into a single staircase. 

The 23-specimen staircase data resulted in a mean fatigue strength of 406.4 MPa 

using Dixon-Mood analysis.  Investigation of the normality assumption for fatigue 

strength distribution was accomplished using a residuals analysis based on a least squares 

curve fit (with bilinear S-N model) to the entire Ti-6Al-4V data set (68 data points).  The 

fatigue strength distribution was shown to be adequately modeled by the extreme value 

distribution, but was not so grossly non-normal as to negate Dixon-Mood analysis.  The 

modified analysis method was applied to the data.  The standard deviation estimate using 

the proposed non-linear correction was 11.69 MPa.  Bootstrapping the P-S data and using 
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the rules defined in the previous section, the bootstrapped estimate increased to 

12.45 MPa.  The standard deviation estimate for 109-cycle fatigue strength using the 

modified staircase analysis method was thus 12.45 MPa. 

Validation of this result was accomplished in two ways.  The first manner was to 

use the residuals data from the entire Ti-6Al-4V data set (68 points).  When modeled by a 

normal distribution, these residuals data resulted in a standard deviation of 13.38 MPa.  It 

is important to note that this standard deviation estimate represents the actual physical 

scatter of the larger set of S-N data points about the best-fit bilinear S-N curve.  The 

12.45 MPa estimate obtained from the modified staircase analysis is within 7% of the 

value obtained by analyzing this physical scatter.  The second manner of comparison was 

to perform a simulation-based “what if” study.  Staircase results were simulated using 

calculated estimates as true fatigue strength parameters.  Of the 30 simulated staircases, 

26 resulted in standard deviation estimates within 18% of the assumed standard 

deviation, with a mean of 12.74 MPa.  Simulated results using larger and smaller 

assumed standard deviations were worse compared to that from the real 23-specimen 

data.  Thus, both validation approaches support the validity of the standard deviation 

estimate obtained through use of the modified staircase method developed in Chapter III.   

As a final note in this section, none of the α-β Ti-6Al-4V tests under fully-

reversed loading resulted in failures which were internally initiated.  All failures were 

surface initiations. 

Test Strategies and the Random Fatigue Limit (RFL) Model 

The genesis of this investigation was the desire to perform a second experimental 

validation of the modified staircase method using a different material.  A beta annealed 

variant of the Ti-6Al-4V alloy was available for use and capable of being quickly and 

inexpensively machined into specimens capable of resonance at 20 kHz to support 

ultrasonic testing.  The microstructure of the beta annealed Ti-6Al-4V was so different 

from the α-β Ti-6Al-4V that it essentially constituted a different material.  However, 

there were fewer data available on this material and it was decided that characterizing the 

S-N behavior over a range of cycles in the very high cycle regime was of more interest 

than just determining fatigue strength at a specific number of cycles.  So, a better means 

of characterizing S-N behavior was needed as the staircase test is not suited for such a 
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purpose.  The RFL model, a maximum likelihood method recently developed by Pascual 

and Meeker for such an application [66], was investigated for use.  However, there was 

an absence of guidance in the literature on how to design tests for use with this model, as 

it was generally demonstrated only after-the-fact in the literature (i.e., it was used to 

analyze test data collected from other tests).  Thus, the goal of this section was to 

determine a test strategy suitable for use with the RFL analysis method. 

Three approaches were considered as possible avenues of test design using the 

RFL method:  (1) traditional staircase protocol, (2) a balanced strategy with equal number 

of specimens at each stress level, and (3) an adaptive staircase in which the step size can 

be changed based on test result trends.  Each test design incorporated 12 specimens, as 

this number represented a test limitation.  For each test design, three scenarios were 

considered:  (1) relatively flat S-N behavior in the very high cycle regime with a fairly 

soft knee in the curve approaching the low cycle regime, (2) sloped S-N behavior in the 

very high cycle regime, and (3) a bilinear S-N curve.  Each scenario was modeled using a 

probabilistic Nishijima hyperbolic S-N model.  For each test approach and scenario 

combination, random 12-specimen tests were simulated using the probabilistic S-N model 

and test protocol.  A PC-based RFL analysis tool was then used to analyze each data set 

to produce the P-S-N curve with maximum likelihood. 

Results of this analysis showed that the adaptive staircase strategy worked better 

for the scenarios with relatively flat S-N behavior in the very high cycle regime, while the 

balanced strategy worked better when the behavior was more sloped.  The adaptive 

approach may have proven more successful for flat S-N behavior due to the use of some 

tests with smaller steps which reduced the spread in data and thus allowed better 

modeling of flat behavior.  One disadvantage for the use of the adaptive approach is that 

the resulting data are unsuitable for analysis using the staircase method, probit method, or 

other common data analysis techniques.  Thus, despite its seeming advantage, it was not 

recommended for use in the beta annealed tests.  Note that more extensive simulation 

work would be required to make any concrete conclusions regarding the supremacy of 

any of these methods.  But the key result of this analysis was that there was no obvious 

disadvantage to the use of the balanced approach compared to the traditional staircase.  

Thus, one could perform a balanced strategy with 4 fixed stress levels with 3 specimens 
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each and use the S-N data in the RFL model and the P-S data in a staircase bootstrap, thus 

ensuring four stress levels. 

Beta Annealed Ti-6Al-4V Data Analysis 

A balanced test strategy was carried out using four stress levels with three 

specimens each to investigate the behavior of beta annealed Ti-6Al-4V in the very high 

cycle regime.  Results from these tests are shown in Figure 89.  The behavior depicted by 

Figure 89 was shown to be possible when the underlying S-N curve was highly sloped 

with a relatively sharp transition to a horizontal fatigue limit.  Unfortunately, the RFL 

model does not do a very good job of modeling this behavior as evidenced by the poor fit 

to this data (see Figure 74), as well as the poor fit (for the changing slope region) to the 

68-point S-N data set from α-β Ti-6Al-4V testing (see Figure 76).   
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Figure 89.  Experimental results for beta annealed Ti-6Al-4V tests at R = -1 
(number of runouts in parentheses). 

Two alternative models were developed to better analyze the beta annealed Ti-

6Al-4V data.  Since the beta annealed data appeared to behave similarly to the α-β 

variant in a qualitative sense, the larger α-β data set would be used to validate the 

models.  The first model, called the bilinear (or hockey stick) model, represented the S-N 

behavior using a sloped line and a horizontal line (see Figure 77).  The second model 

used the Nishijima hyperbolic model as a median S-N curve (see Figure 58).  Both 
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models utilized the extreme value distribution as the fatigue strength distribution across 

all cycles, based on the results of the α-β Ti-6Al-4V residuals analysis which showed that 

the scatter about the S-N curve was well described by the extreme value distribution and 

also showed the scatter to be approximately constant as a function of number of cycles.  

Unlike more conventional P-S-N analysis approaches, this approach specified the fatigue 

strength distribution rather than the fatigue life distribution.   

A maximum likelihood approach was used to estimate best-fit (most likely) model 

parameters for each model using the S-N data from the α-β Ti-6Al-4V data set.  The 

results of these fits are shown in Figure 90 and Figure 91.  These models appear to be in 

close agreement with the experimental data.  Data points are spread with appropriate 

frequency given the probability levels.  Based on the analysis of this α-β data, the 

proposed P-S-N models and associated maximum likelihood method provide a good fit 

for Ti-6Al-4V behavior.  In terms of likelihood, the bilinear fit was a slightly better fit. 
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Figure 90.  P-S-N plot of α-β Ti-6Al-4V data (R = -1) using the bilinear model with 
extreme value distribution for fatigue strength with constant standard deviation. 
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Figure 91.  P-S-N plot of α-β Ti-6Al-4V data (R = -1) using the Nishijima model with 
extreme value distribution for fatigue strength with constant standard deviation. 

With the proposed models validated using the larger α-β data set, the models 

were applied to the beta annealed Ti-6Al-4V data, with results shown in Figure 85 and 

Figure 86.  Based on the bilinear fit, the median fatigue strength at 109 cycles is 

397.5 MPa, with a 95% lower bound of 366.0 MPa.  Based on the Nishijima fit, the 

median fatigue strength at 109 cycles is equal to 396.2 MPa, with a 95% lower bound of 

361.2 MPa.   

Despite a very small sample size, difficult to analyze S-N data, and the inability of 

the RFL model to provide a satisfying fit, the probabilistic stress-life analysis of beta 

annealed Ti-6Al-4V was still able to be accomplished.  This analysis led to the 

development of two models which may be of use for future test programs with similarly 

behaving materials.  The approach also demonstrated the utility of a maximum likelihood 

approach with fatigue strength, rather than fatigue life, as the primary distribution.  One 

drawback to such an approach is that the fatigue life distribution is dependent rather than 

independent and may not represent real fatigue life behavior as well. 
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Areas for Further Research 

This research effort has addressed a number of significant issues, but of course 

additional research opportunities still remain unaddressed.  This section provides a brief 

overview of areas for further research which may be of interest. 

Staircase Investigation 

An interesting extension to the staircase analysis presented herein would be a 

more detailed investigation of the combined use of the proposed non-linear correction for 

standard deviation, the bootstrapping algorithm, and a screening test (similar to a short 

iteration).  Due to the manual labor required by such an approach given the state of the 

staircase algorithm code developed for this research, investigation along these lines was 

rather limited.  However, with the “parts” now in place (i.e., an understanding of the 

standard deviation bias, development of a bias correction factor, formulation of a 

bootstrap algorithm, and investigation of iteration behavior), the interaction of these parts 

may possibly be exploited to produce a more powerful staircase algorithm in the future. 

Bootstrapped P-S-N Plots 

Bootstrapping was shown to significantly reduce scatter in standard deviation 

estimates by allowing a distribution of standard deviation points to be generated from the 

P-S data generated by staircase tests.  In a similar manner, bootstrapping may be applied 

to generate a distribution of P-S-N plots based on maximum likelihood analysis from a 

single set of S-N data.  Relevant statistics taken from this distribution of P-S-N plots can 

then be used to provide a bootstrapped P-S-N plot which theoretically may be less prone 

to variance and a better model of true behavior despite small sample data.  Such an 

approach may be mathematically cumbersome but once automated could provide an 

improved means of analyzing S-N behavior, specifically for tests with limited samples. 

Mean Stress Effects 

In this research, only fully-reversed test data were used for experimental 

validation and investigation.  Use of mean loads to generate test data at stress ratios other 

than -1 could be investigated to determine if internal initiation can be observed in the α-β 

or beta annealed Ti-6Al-4V material.  The methods developed in this research are 

independent of stress ratio and may be applied to testing at these other stress ratios. 
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Residual Stress Effects 

Another means to possibly observe internally-initiated failures in Ti-6Al-4V 

would be to use residual stresses at the surface.  Residual stresses may be induced 

through shot peening (or other methods such as laser shock peening or low plasticity 

burnishing).  The compressive surface stresses have the effect of increasing the fatigue 

strength, and thus may allow an internally-initiated failure mode to be observed once the 

surface-initiated failure mode is no longer the life-controlling mechanism. 

Conclusions 

The research presented in this dissertation provides the designer or researcher 

with real analysis tools to apply to materials testing with limited samples.  The modified 

staircase test allows a fairly straightforward, more reliable, and robust means (compared 

to conventional quantal response tests) of estimating fatigue strength at a given number 

of cycles.  Thus, this method may be directly applied to address 109-cycle HCF 

requirements outlined by the Engine Structural Improvement Program and defined in 

MIL-HDBK-1783B.  The method utilizes quantal response data and thus would also be 

applicable to any application for which pass/fail responses are based on a variable input 

(may be a load, stress, dosage, height, etc.).  In addition, the maximum likelihood models 

developed for the Ti-6Al-4V stress-life behavior may be applied to other materials of 

interest, so long as assumptions are validated.  One class of materials which may benefit 

from such a model includes titanium matrix composites, such as the Ti-6Al-4V matrix 

with silicon carbide fibers currently being tested by AFRL/MLLM.  In summary, this 

research should have real-world impact in improving current testing approaches for 

small-sample tests typical of high cycle and very high cycle materials programs. 
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APPENDIX A.  EXPERIMENTAL STRESS-LIFE DATA COLLECTED 
FROM TI-6AL-4V TESTS 

In this appendix, the experimental results for Ti-6Al-4V fatigue tests are tabulated for 

easy reference.  All data are part of the National HCF S&T Program [4] and all tests are 

conducted under fully-reversed (R = -1) loading under ambient air conditions. 

Table 24.  Fatigue data for α-β Ti-6Al-4V using conventional fatigue machines. 

Specimen Stress 
(MPa) 

Cycles 
(bold = runout) 

1 774.03 5.319E+03 
2 729.08 6.737E+03 
3 699.84 9.700E+03 
4 586.49 2.020E+04 
5 546.29 4.854E+04 
6 534.36 3.777E+04 
7 499.89 6.823E+04 
8 482.65 1.034E+05 
9 465.41 8.830E+04 

10 448.17 1.125E+05 
11 430.94 1.833E+05 
12 420.60 4.963E+04 
13 420.60 4.069E+05 
14 420.60 5.913E+05 
15 420.60 7.050E+06 
16 417.15 1.000E+08 
17 417.15 1.000E+08 
18 413.70 2.058E+05 
19 413.70 3.248E+06 
20 413.70 6.554E+06 
21 413.70 1.000E+07 
22 413.70 1.610E+05 
23 413.70 8.746E+06 
24 413.70 1.000E+08 
25 413.70 1.000E+08 
26 413.70 2.400E+06 
27 406.80 1.000E+08 
28 406.80 1.000E+08 
29 399.91 1.000E+07 
30 399.91 1.099E+06 
31 398.19 1.000E+09 
32 393.02 3.634E+05 
33 393.02 4.490E+07 
34 393.02 1.000E+08 
35 379.23 4.750E+05 
36 379.23 1.835E+06 
37 344.75 1.000E+09 
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Table 25.  Fatigue data for α-β Ti-6Al-4V with stress-relief annealing and no cooling 
for 108 and 109 staircase tests using 20 kHz ultrasonic machine. 

Specimen Stress 
(MPa) 108 Result Cycles 109 Result Cycles 

1 400 Survival 1.0E+08 Survival 1.0E+09 
2 410 Survival 1.0E+08 Survival 1.0E+09 
3 420 Failure 1.0E+06 Failure 1.0E+06 
4 410 Survival 1.0E+08 Survival 1.0E+09 
5 420 Failure 7.2E+05 Failure 7.2E+05 
6 410 Failure 3.0E+05 Failure 3.0E+05 
7 400 Survival 1.0E+08 Survival 1.0E+09 

8 410 Survival 1.0E+08 Survival 1.0E+09 
9 420 Survival 1.0E+08 Survival 1.0E+09 
10 430 Failure 3.8E+05 Failure 3.8E+05 

Table 26.  Fatigue data for α-β Ti-6Al-4V with stress-relief annealing and with 
cooling for 108 and 109 staircase tests using 20 kHz ultrasonic machine. 

Specimen Stress 
(MPa) 108 Result Cycles 109 Result Cycles 

1 410 Failure 5.7E+06 Failure 5.7E+06 
2 400 Survival 1.0E+08 Failure 1.6E+08 
3 410 Failure 6.1E+06 Failure 6.1E+06 
4 400 Failure 9.0E+06 Failure 9.0E+06 
5 390 Survival 1.0E+08 Failure 1.1E+08 
6 400 Survival 1.0E+08 Survival 1.0E+09 
7 410 Failure 2.9E+07 Failure 2.9E+07 

8 400 Survival 1.0E+08 Survival 1.0E+09 
9 410 Failure 7.1E+06 Failure 7.1E+06 
10 400 Survival 1.0E+08 Failure 6.0E+08 

Table 27.  Fatigue data for α-β Ti-6Al-4V without stress-relief annealing and no 
cooling for 108 staircase tests using 20 kHz ultrasonic machine. 

Specimen Stress 
(MPa) 108 Result Cycles 

1 400 Failure 2.9E+06 
2 400 Failure 1.8E+05 
3 390 Failure 7.1E+05 
4 380 Survival 1.0E+08 
5 390 Survival 1.0E+08 
6 400 Failure 6.0E+06 
7 390 Survival 1.0E+08 

8 400 Survival 1.0E+08 
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Table 28.  Fatigue data for additional α-β Ti-6Al-4V tests used to supplement the 
stress-relief annealed staircase data. 

Specimen Stress 
(MPa) 109 Result Cycles 

1 380 Survival 1.0E+09 

2 380 Survival 1.0E+09 
3 380 Survival 1.0E+09 

Table 29.  Fatigue data for beta annealed Ti-6Al-4V using 20-kHz ultrasonic 
machine. 

Specimen Stress 
(MPa) 109 Result Cycles 

1 420 Failure 2.483E+05 
2 420 Failure 3.316E+05 
3 420 Failure 4.026E+05 
4 400 Failure 3.399E+05 
5 400 Failure 5.967E+05 
6 400 Survival 1.000E+09 
7 380 Failure 5.807E+05 
8 380 Survival 1.000E+09 
9 380 Survival 1.000E+09 
10 360 Failure 4.755E+05 
11 360 Survival 1.000E+09 
12 360 Survival 1.000E+09 
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APPENDIX B.  DETAILED RESULTS FOR COMPARISON OF 
METHODS FOR MEAN FATIGUE STRENGTH ESTIMATION 

In this appendix, the various methods for calculating mean fatigue strength using 

staircase data are compared for tests in which the starting stress differs from the true 

mean, thus leading to a string of survivals or failures at the beginning of the staircase test.  

The methods compared include the traditional Dixon-Mood analysis [27], the modified 

method of Brownlee et al [21], Dixon’s modified method for small samples [26], and 

Little’s methods (using both maximum likelihood estimation and minimum chi-square 

analysis) [42].  The goal of this comparison was to determine which method provided the 

best estimates for mean fatigue strength for a small-sample test which starts significantly 

off the true mean. 

A total of 40 unique simulated data sets were generated for an underlying fatigue 

strength distribution Normal(400,5) using a step size of 1σ.  Ten of the data sets used a 

starting stress 4 steps below the true mean, 10 were 3 steps below, 10 were 3 steps above, 

and 10 were 4 steps above.  Each staircase was terminated once four trials were 

accomplished after the initial string of survivals or failures.  Survivals are denoted by “O” 

and failures by “X”.  Thus, a result may look like OOOXOXX.  The data for each of the 

four starting stress scenarios are shown in the tables below. 

Table 30.  Comparison of various methods of determining fatigue strength mean for 
simulated data sets with true mean of 400 MPa starting 4 steps below the true mean. 

 Sequence of 
Results 

Dixon-
Mood 

Brownlee 
et al Dixon Little 

(MLE) 
Little 

(min χ2)
Run 1 OOXOOO 387.5 392.0 394.2 394.3 393.7 
Run 2 OOXOOX 390.0 390.0 390.5 390.7 390.5 
Run 3 OOOXOXO 392.5 393.0 393.7 393.7 393.3 
Run 4 OOOXOOO 392.5 397.0 399.2 399.3 398.7 
Run 5 OOOXOOX 395.0 395.0 395.7 395.7 395.5 
Run 6 OOOOXXOO 395.0 396.0 396.9 396.9 396.9 
Run 7 OOOOXOXX 395.8 396.0 395.9 395.9 396.2 
Run 8 OOOOXOOX 400.0 400.0 400.7 400.7 400.5 
Run 9 OOOOOXXOX 399.2 399.0 399.3 399.3 399.0 
Run 10 OOOOOXOXX 400.8 401.0 400.9 400.9 401.2 
Average   394.8 395.9 396.7 396.7 396.6 
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Table 31.  Comparison of various methods of determining fatigue strength mean for 
simulated data sets with true mean of 400 MPa starting 3 steps below the true mean. 

 Sequence of 
Results 

Dixon-
Mood 

Brownlee 
et al Dixon Little 

(MLE) 
Little 

(min χ2)
Run 1 OOXOOX 395.0 395.0 395.7 395.7 395.5 
Run 2 OOXOXO 392.5 393.0 393.7 393.7 393.3 
Run 3 OOXOOO 392.5 397.0 399.2 399.3 398.7 
Run 4 OOOXXOO 395.0 396.0 396.9 396.9 396.9 
Run 5 OOOXOOX 400.0 400.0 400.7 400.7 400.5 
Run 6 OOOXOXO 397.5 398.0 398.7 398.7 398.3 
Run 7 OOOXOOO 397.5 402.0 404.2 404.3 403.7 
Run 8 OOOOXXOO 400.0 401.0 401.9 401.9 401.9 
Run 9 OOOOXOOX 405.0 405.0 405.7 405.7 405.5 
Run 10 OOOOXOXX 400.8 401.0 400.9 400.9 401.2 
Average   397.6 398.8 399.8 399.8 399.6 

 

Table 32.  Comparison of various methods of determining fatigue strength mean for 
simulated data sets with true mean of 400 MPa starting 3 steps above the true mean. 

 Sequence of 
Results 

Dixon-
Mood 

Brownlee 
et al Dixon Little 

(MLE) 
Little 

(min χ2)
Run 1 XXOXXX 407.5 403.0 400.8 398.9 401.8 
Run 2 XXOOXX 410.0 409.0 408.1 408.1 408.1 
Run 3 XXOXXO 405.0 403.0 404.3 404.3 404.6 
Run 4 XXXOXOX 402.5 402.0 401.3 401.3 401.7 
Run 5 XXXOXXX 402.5 398.0 395.8 393.9 396.8 
Run 6 XXXOOXX 405.0 404.0 403.1 403.1 403.1 
Run 7 XXXXOOXO 400.8 401.0 400.7 400.7 401.0 
Run 8 XXXXOXOO 400.0 399.0 399.1 398.9 399.2 
Run 9 XXXXOOXX 400.0 399.0 398.1 397.0 398.8 
Run 10 XXXXOXOX 397.5 397.0 396.3 395.2 396.9 
Average   403.8 401.5 400.8 400.1 401.2 
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Table 33.  Comparison of various methods of determining fatigue strength mean for 
simulated data sets with true mean of 400 MPa starting 4 steps above the true mean. 

 Sequence of 
Results 

Dixon-
Mood 

Brownlee 
et al Dixon Little 

(MLE) 
Little 

(min χ2)
Run 1 XXOXXO 410.0 410.0 409.3 409.3 409.6 
Run 2 XXOXXX 412.5 408.0 405.8 405.8 406.3 
Run 3 XXOXOX 412.5 412.0 411.3 411.3 411.8 
Run 4 XXXOOXX 410.0 407.0 408.1 408.1 408.1 
Run 5 XXXOXXX 407.5 403.0 400.8 400.8 401.3 
Run 6 XXXOXOX 407.5 407.0 406.3 406.3 406.7 
Run 7 XXXOXXO 405.0 405.0 404.3 404.3 404.6 
Run 8 XXXXOXXX 402.5 398.0 395.8 395.8 396.3 
Run 9 XXXXOXXO 400.0 400.0 399.3 399.3 399.6 
Run 10 XXXXOOOX 405.0 406.0 403.1 403.1 403.1 
Average   407.3 405.6 404.4 404.4 404.7 

 

 In general, both the Little and Dixon MLE-based methods provide a better 

estimate (compared to the other methods) for mean fatigue strength for a small set of 

staircase data with leading string of same-result data points.  However, when the Dixon-

Mood estimate is slightly too high (if starting below) or too low (if starting high), the 

corrected means may actually make the result slightly worse.  Note, however, that these 

results are statistically less probable.  In other words, when starting low, it is far more 

likely that the result will be low rather than high (and vice versa).  Thus, on average, the 

corrections work quite well.
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APPENDIX C.  OVERVIEW OF RABB’S USE OF SIZE EFFECT FOR 
ESTIMATING FATIGUE STRENGTH STANDARD DEVIATION 

In this appendix, a brief overview of Rabb’s approach to using size effect as a means of 

standard deviation is presented [73]. 

Rabb noted that it is well known that a size factor influences the fatigue limit for a 

given specimen – specimens stressed over larger areas have lower fatigue limits than 

those stressed over smaller areas.  Rabb used the concept of a size factor to develop a 

method of evaluating the standard deviation of the fatigue strength.  His premise is 

summarized by the following: 

“The statistical size factor is basically determined by the effective stress 
area, or in some cases, the effective stress volume, and the standard 
deviation of the fatigue limit. … It is therefore possible to evaluate a 
reliable estimate of the standard deviation by calculating it from the 
observed statistical size effect from two staircase tests with different 
specimen sizes.”  [73] 

The standard deviation of the material’s fatigue strength is determined using the 

following approach.  First, the ratio η is obtained (Rabb used n to denote this ratio as it 

represents the number of links from the theory of weakest link developed by Rabb and 

Makkonen, but it will be denoted as η to avoid confusion with sample sizes).  An 

approximation for η is found as the ratio of effective stress areas, where A1 is the 

effective stress area of the specimens with larger stress area and A2 is the effective stress 

area of the specimens with smaller stress area, so that: 
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1

A
A

=η  (64) 

Unfortunately, calculation of the effective stress areas appears to be no trivial 

task.  Rabb states that the effective stress area can be estimated by dividing the surface of 

the specimen into a number of subareas Ai, each with average stress σi.  He then uses the 

following relations, where sr is the relative standard deviation of the fatigue strength of 

the material (i.e., sr = σ/μ) which obviously must be approximated since σ (the true 
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standard deviation of the fatigue strength, not to be confused with stress) is the unknown 

which the method seeks to determine: 
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Assuming that effective stress areas can be found using the relations above or 

some other theoretical or numerical method, the next step is to conduct staircase tests for 

each specimen size, yielding estimates for mean fatigue strength ( 1μ̂ and 2μ̂ ) using any 

reliable method to analyze staircase data.  Now, the statistical size factor Ksize is found 

simply as the ratio of the two mean fatigue strengths: 

 
1

2

ˆ
ˆ
μ
μ

=sizeK  (66) 

Note that Ksize should be greater than 1 since specimens with larger effective 

stress areas (denoted by subscript 1) should have lower fatigue strengths compared to 

specimens with smaller stress areas (denoted by subscript 2).  Next, the value λ of the 

standard normal variable is determined iteratively from the following equation, where η 

is already defined: 
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Finally, with Ksize and λ known, the relative standard deviation sr is given by the 

following equation: 
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Rabb’s paper presents details for determining the statistical confidence bounds of 

the relative standard deviation using the chi-square distribution. 

This novel method has one distinct advantage.  Namely, the standard deviation 

estimate is derived primarily from the statistical size factor Ksize which is determined as 

the ratio of two mean fatigue strengths.  Since the staircase test is both accurate and 

efficient in calculating mean fatigue strength, this ratio is not prone to the kinds of errors 

inherent with standard deviation estimation using the Dixon-Mood method.  Nowhere in 
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the analysis is the generally unreliable standard deviation estimate from staircase analysis 

necessary.  However, the method does require a reliable means to estimate effective 

stress areas.  This problem may be quite difficult in itself.   

Although this method may have merit, it is not explored further in this study.  Use 

of the method would require the machining and testing of test specimens of different 

sizes which would still produce resonance at 20 kHz for tests conducted on the 

AFRL/MLLM ultrasonic fatigue testing machine.  
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APPENDIX D.  STAIRCASE SIMULATION CODE 

The MATLAB™ code used for each element of the staircase simulation is presented in 

this appendix.  Some elements were modified as needed to address specific questions.   

 

Master Simulation File (fls_sim_master.m) 

This code was used to run a batch of simulations using a text file for input data and calls 

a staircase analysis module (fls_sim_calcs.m) to analyze the staircase data for each trial.  

Output data is stored in a text file and may be shown graphically in summary format or 

detailed results for each iteration (should only be selected if running a few iterations or it 

will take a very long time to complete). 

 
% Purpose:  Run a series of staircase sim cases based on input file. 
% Input:    input.dat -- data file of simulation cases. 
% Required: fls_sim_calcs.m -- runs staircase sim for each case. 
% Output:   output.dat -- data file of statistics of interest. 
 
clear all; clc; 
 
% Read input file (each row is a different simulation case). 
 
% Parameters for each case are listed in 6 columns: 
%   truedist = ID for underlying FLS distribution (1 = normal). 
%   truemean = mean of underlying FLS distribution. 
%   truestdv = std dev of underlying FLS distribution. 
%   initstress = initial stress used to start staircase test. 
%   step_s = step used in staircase test in units of true std deviations. 
%   n = number of specimens to be used for each staircase simulation. 
 
datafile = load('input.dat'); 
for s = 1:size(datafile,1) 
    truedist_v(s) = round(datafile(s,1)); 
    truemean_v(s) = datafile(s,2); 
    truestdv_v(s) = datafile(s,3); 
    step_v(s) = datafile(s,4)*truestdv_v(s); 
    initstress_v(s) = datafile(s,5); 
    n_v(s) = round(datafile(s,6)); 
end 
 
% Set simulation parameters. 
 
m = 1000;          % Number of iterations used for each simulation case. 
graphics = 0;   % 0 = graphics off, 1 = case summary, 2 = each iteration. 
                % Unless running only a couple cases, turn graphics off. 
alpha = 0.05;   % Significance level used for confidence intervals. 
maxtime = 1000;   % Sets the max time before simulation times out. 
trouble = 0;    % Sets trouble-shooting dispay indicator to NO. 
 
% Run all the simulation cases.  Note that a "while" loop (rather than a 
% "for" loop) was used in order to terminate the simulation after a specified 
% time.  Note, however, that this time only affects whether another case is 
% started or not.  If there is a delay due to internal calculations in a 
% particular case, the program will not timeout until the case is complete 
% (but, at least another case will not be started). 
 
tic  % Start timer. 
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s = 1;   % Initialize simulation case counter. 
timeout = 0; 
fid = fopen('output.dat','w+');   % Opens output data file. 
while s <= size(datafile,1) 
    truedist = truedist_v(s); 
    truemean = truemean_v(s); 
    truestdv = truestdv_v(s); 
    step = step_v(s); 
    initstress = initstress_v(s); 
    n = n_v(s); 
    fls_sim_calcs; 
    output(s,1) = mean(sigma); 
    output(s,2) = std(sigma); 
    output(s,3) = prctile(sigma, 10); 
    output(s,4) = prctile(sigma, 20); 
    output(s,5) = prctile(sigma, 30);     
    output(s,6) = prctile(sigma, 40); 
    output(s,7) = prctile(sigma, 50); 
    output(s,8) = prctile(sigma, 60); 
    output(s,9) = prctile(sigma, 70); 
    output(s,10) = prctile(sigma, 80); 
    output(s,11) = prctile(sigma, 90); 
    time = toc; 
    totalcases = s; 
    fprintf(fid,'%7.4f \t %7.4f \t %7.4f \t %7.4f \t %7.4f \t %7.4f \t %7.4f \t %7.4f \t 
%7.4f \t %7.4f \t %7.4f \n',output(s,:)); 
    if time > maxtime 
        timeout = 1; 
        s = size(datafile,1) + 1; 
    else 
        s = s + 1; 
    end 
end 
fclose(fid);   % Close output data file. 
 
% At this point, we have an R x 10 matrix of output data, where R is the 
% number of completed cases.  Each row corresponds to a simulation case 
% with the mean, std dev, median, LCB, and UCB for both mu and sigma.   
% Here, mu is the calculated FLS mean and sigma is the calculated FLS std  
% dev using the Dixon-Mood method.  LCB and UCB are the lower and upper 
% confidence bounds. 
 
% Display input and output on screen. 
 
datafile 
output 
if timeout == 1 
    disp(['Simulation timed out.']); 
end 
disp(['Cases completed: ', int2str(totalcases), ' of ', int2str(size(datafile,1))]); 
disp([' ']); 

 

Staircase Simulator and Analyzer (fls_sim_calcs.m) 

This code was used to simulate a staircase test given input parameters provided by the 

fls_sim_master.m program, or it can be used as stand-alone if comment markers on 

variable identities are removed.  The fatigue strength statistics given the simulated data 

are determined using the Dixon-Mood method. 

 
% Purpose:  Run a specified staircase simulation to determine fatigue limit stress  
%           (FLS) mean and std dev. 
% Input:    Parameters preset when called by fls_sim_master.m. 
% Output:   Results stored in variables mu and sigma (vectors of values for 
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%           FLS mean and standard deviation). 
 
clear fls stresses result stresslevel P S mu sigma count fail live k; 
 
% Input parameters are set within fls_sim_master.m before this file is 
% called.  However, if this file is used as stand-alone, then the following 
% input dialogue can be used (must remove comment markers). 
 
% disp(['*** FATIGUE LIMIT DISTRIBUTION PARAMETERS ***']); 
% truedist = input('Enter distribution (1 = normal): '); 
% truemean = input('Enter mean of distribution: '); 
% truestdv = input('Enter standard deviation of distribution: '); 
% disp(['*** STAIRCASE TEST PARAMETERS ***']); 
% initstress = input('Enter initial stress level: '); 
% step = input('Enter step size (interval): '); 
% n = input('Enter number of specimens for testing: '); 
% disp(['*** SIMULATION PARAMETERS ***']); 
% m = input('Enter number of iterations: '); 
% graphics = input('Graphics (0 = off, 1 = summary only, 2 = each iteration): '); 
% trouble = input('Troubleshooting (0 = off, 1 = display variables): '); 
 
% Begin the staircase test simulation. 
 
for i = 1:m   % Outer loop based on number of specified iterations. 
     
% This portion generates a random FLS and compares it to current stress 
% level to determine if the specimen failed or survived.  If it failed, the 
% stress level is reduced.  If it survived, the stress level is increased. 
 
    stress = initstress;   % Initial stress level for staircase test. 
    sumfail = 0;   % Initialize number of failures to zero.     
    sumlive = 0;   % Initialize number of survivals to zero.  
    for j = 1:n   % "j" loops will always correspond to number of specimens. 
        if truedist == 1 
            fls(j) = normrnd(truemean,truestdv); 
        else 
            disp(['ERROR:  User did not select a supported distribution.']); 
        end 
        stresses(j) = stress;  % Stress at which specimen j was tested. 
        if stress > fls(j) 
            result(j) = 1;   % Specimen failed. 
            sumfail = sumfail + 1; 
            stress = stress - step; 
        else 
            result(j) = 0;   % Specimen survived. 
            sumlive = sumlive + 1; 
            stress = stress + step; 
        end 
    end 
     
% This portion finds the stress corresponding to i = 0 using the Dixon-Mood 
% notation.  This stress level is dependent on whether most specimens failed 
% (then it is the lowest stress level corresponding to a survival) or 
% survived (then it is the lowest stress level corresponding to a failure). 
     
    stress0 = 1.0e+12;   % Initialize stress0 to outrageously high number. 
    if sumfail <= sumlive   
        for j = 1:n 
            if (result(j) == 1) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    else    
        for j = 1:n 
            if (result(j) == 0) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    end 
     
%  This portion determines the number of occurrences and failures at each 
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%  stress level.  Note that the index identifying stress level must be 
%  adjusted so that all vector indices are >= 1 as required by MATLAB. 
%  Data for P-S plot are also generated. 
 
    kmax = 0;   % Maximum stress level tested relative to stress0. 
    kmin = 0;   % Minimum stress level tested relative to stress0. 
    for j = 1:n   % Determines the max and min stress levels. 
        stresslevel(j) = round((stresses(j) - stress0)/step); 
        if stresslevel(j) > kmax 
            kmax = stresslevel(j); 
        elseif stresslevel(j) < kmin 
            kmin = stresslevel(j); 
        end 
    end 
    for k = 1:(kmax - kmin + 1) 
        count(k) = 0;   % Initialize count of occurrences at each level. 
        fail(k) = 0;    % Initialize count of failures at each level. 
        live(k) = 0;    % Initialize count of survivals at each level. 
    end 
    for j = 1:n   % Count number of stress level occurrences and failures. 
        adjstresslevel = stresslevel(j) - kmin + 1;  % Adjusted to be >= 1. 
        count(adjstresslevel) = count(adjstresslevel) + 1; 
        if result(j) == 1 
            fail(adjstresslevel) = fail(adjstresslevel) + 1; 
        else 
            live(adjstresslevel) = live(adjstresslevel) + 1;         
        end 
        P(adjstresslevel) = fail(adjstresslevel)/count(adjstresslevel); 
    end 
    for k = 1:(kmax - kmin + 1) 
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        S(k) = stress0 + h*step; 
    end 
     
%  This portion calculates mean and standard deviation of FLS for each 
%  iteration using the statistics of the Dixon-Mood method.  Note that this 
%  analysis assumes a normal distribution for FLS.  Also, note that the 
%  summation over k = (- kmin + 1):(kmax - kmin + 1) corresponds to the 
%  summation over i = 0:i_max using the Dixon-Mood method's notation. 
     
    sum_mi = 0;   % Initialize summations used in Dixon-Mood statistics. 
    sum_imi = 0; 
    sum_iimi = 0; 
     
    for k = (- kmin + 1):(kmax - kmin + 1)    
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        if sumfail > sumlive 
            mi = live(k); 
        else 
            mi = fail(k); 
        end 
        sum_mi = sum_mi + mi; 
        sum_imi = sum_imi + h*mi; 
        sum_iimi = sum_iimi + h*h*mi; 
    end 
  
    if sumfail > sumlive 
        mu(i) = stress0 + step*(sum_imi/sum_mi + 0.5); 
    else 
        mu(i) = stress0 + step*(sum_imi/sum_mi - 0.5); 
    end 
    uglyterm = (sum_mi*sum_iimi - sum_imi*sum_imi)/(sum_mi^2); 
    if uglyterm > 0.3 
        sigma(i) = 1.62*step*(uglyterm + 0.029); 
    else 
        sigma(i) = 0.53*step; 
    end 
     
% Troubleshooting.  Remove semicolons to investigate variables. 
 
    if trouble == 1 
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        disp(['DATA BY SPECIMEN']); 
        fls 
        stresses 
        result 
        sumfail 
        sumlive 
        stresslevel 
        disp(['DATA BY STRESS LEVEL']); 
        count 
        fail 
        live 
        disp(['DATA USED IN CALCS']); 
        kmin 
        kmax 
        sum_mi 
        sum_imi 
        sum_iimi 
        uglyterm 
        mu 
        sigma 
    end 
 
% This portion displays results for each iteration if so selected by user. 
% Intermediate results allow the user to visualize results, sanity check, 
% and troubleshoot. 
 
    if graphics == 2 
        subplot(2,2,1); 
            hist(fls) 
            title('Actual fatigue limit strengths generated'); 
            xlabel('Stress'); 
            ylabel('Frequency'); 
        subplot(2,2,2); 
            plot(stresses, 'r-x') 
            axis([1 n min(stresses) max(stresses)]); 
            title('Staircase test results'); 
            xlabel('Specimen'); 
            ylabel('Stress'); 
        subplot(2,2,3); 
            plot(S,P, '-o') 
            title('P-S data'); 
            xlabel('Stress'); 
            ylabel('Percent failures');       
        subplot(2,2,4);    
            bar(stresslevel) 
            title('Staircase test results'); 
            axis([1 n kmin kmax]); 
            xlabel('Specimen'); 
            ylabel('Stress level (steps)'); 
        disp([' ']); 
        disp(['Iteration: ', int2str(i)]); 
        mu 
        sigma 
        pause = input('Press <Enter> to continue to next iteration: '); 
    end 
     
end 
 
% At this point, we have two vectors "mu" and "sigma", each of m elements 
% (the number of iterations).  So, we have created a distribution for both 
% the mean and standard deviation of FLS based on simulated iterations of a 
% staircase test program.  Summary output is displayed if selected by user. 
 
if graphics > 0 
    newplot 
    subplot(1,2,1); 
    hist(mu) 
    title('Distribution of FLS mean'); 
    xlabel('Stress'); 
    ylabel('Frequency'); 
    subplot(1,2,2); 
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    hist(sigma) 
    title('Distribution of FLS std dev'); 
    xlabel('Stress'); 
    ylabel('Frequency'); 
    disp([' ']); 
    disp(['*** SUMMARY RESULTS ***']); 
    disp([' ']); 
    p = 100*[0 0.05 0.1 0.25 0.5 0.75 0.9 0.95 1]; 
    disp(['Results for mean of FLS (distribution of mu): ']); 
    disp(['  Mean = ', num2str(mean(mu))]); 
    disp(['  Std Dev = ', num2str(std(mu))]); 
    if m > 1 
        y = prctile(mu,p); 
        percentiles_for_mu = transpose([p;y]) 
    end 
    disp(['Results for std dev of FLS (distribution of sigma): ']); 
    disp(['  Mean = ', num2str(mean(sigma))]); 
    disp(['  Std Dev = ', num2str(std(sigma))]); 
    if m > 1 
        z = prctile(sigma,p); 
        percentiles_for_sigma = transpose([p;z]) 
    end 
end 

 

Detailed Staircase Simulator and Analyzer (stair.m) 

This code was used to simulate a staircase test and calculate fatigue strength statistics 

using Dixon-Mood analysis, Svensson-Lorén correction, and the proposed correction.  

The P-S data from the simulated staircase is stored in variables Pstar and Sstar, 

which can be used by the bootstrapping algorithm to provide bootstrapped results.  Note 

that Pollak correction constants are hardcoded based on the number of specimens. 

 
% Purpose:  Generate a simulated staircase test given an initial stress, 
%           step size, and number of specimens. 
 
clear all; clc; 
 
% Input parameters. 
 
truedist = 1; 
truemean = 400; % Must specify. 
truestdv = 10;  % Must specify. 
step = 5;  % Must specify. 
initstress = 400;  % Must specify. 
n = 15;   % Must specify. 
m = 1;   % Number of iterations. 
 
% Simulate a staircase test based on these parameters. 
    
% This portion generates a random FLS and compares it to current stress 
% level to determine if the specimen failed or survived.  If it failed, the 
% stress level is reduced.  If it survived, the stress level is increased. 
 
stress = initstress;   % Initial stress level for staircase test. 
sumfail = 0;   % Initialize number of failures to zero.     
sumlive = 0;   % Initialize number of survivals to zero.  
for j = 1:n   % "j" loops will always correspond to number of specimens. 
    if truedist == 1 
        fls(j) = normrnd(truemean,truestdv); 
    else 
        disp(['ERROR:  User did not select a supported distribution.']); 
    end 
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    stresses(j) = stress;  % Stress at which specimen j was tested. 
    if stress > fls(j) 
        result(j) = 1;   % Specimen failed. 
        sumfail = sumfail + 1; 
        stress = stress - step; 
    else 
        result(j) = 0;   % Specimen survived. 
        sumlive = sumlive + 1; 
        stress = stress + step; 
    end 
end 
 
% This portion finds the stress corresponding to i = 0 using the Dixon-Mood 
% notation.  This stress level is dependent on whether most specimens failed 
% (then it is the lowest stress level corresponding to a survival) or 
% survived (then it is the lowest stress level corresponding to a failure). 
     
    stress0 = 1.0e+12;   % Initialize stress0 to outrageously high number. 
    if sumfail <= sumlive   
        for j = 1:n 
            if (result(j) == 1) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    else    
        for j = 1:n 
            if (result(j) == 0) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    end 
     
%  This portion determines the number of occurrences and failures at each 
%  stress level.  Note that the index identifying stress level must be 
%  adjusted so that all vector indices are >= 1 as required by MATLAB. 
%  Data for P-S plot are also generated. 
 
    kmax = 0;   % Maximum stress level tested relative to stress0. 
    kmin = 0;   % Minimum stress level tested relative to stress0. 
    for j = 1:n   % Determines the max and min stress levels. 
        stresslevel(j) = round((stresses(j) - stress0)/step); 
        if stresslevel(j) > kmax 
            kmax = stresslevel(j); 
        elseif stresslevel(j) < kmin 
            kmin = stresslevel(j); 
        end 
    end 
    for k = 1:(kmax - kmin + 1) 
        count(k) = 0;   % Initialize count of occurrences at each level. 
        fail(k) = 0;    % Initialize count of failures at each level. 
        live(k) = 0;    % Initialize count of survivals at each level. 
    end 
    for j = 1:n   % Count number of stress level occurrences and failures. 
        adjstresslevel = stresslevel(j) - kmin + 1;  % Adjusted to be >= 1. 
        count(adjstresslevel) = count(adjstresslevel) + 1; 
        if result(j) == 1 
            fail(adjstresslevel) = fail(adjstresslevel) + 1; 
        else 
            live(adjstresslevel) = live(adjstresslevel) + 1;         
        end 
        P(adjstresslevel) = fail(adjstresslevel)/count(adjstresslevel); 
    end 
    for k = 1:(kmax - kmin + 1) 
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        S(k) = stress0 + h*step; 
    end 
     
%  This portion calculates mean and standard deviation of FLS for each 
%  iteration using the statistics of the Dixon-Mood method.  Note that this 
%  analysis assumes a normal distribution for FLS.  Also, note that the 
%  summation over k = (- kmin + 1):(kmax - kmin + 1) corresponds to the 
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%  summation over i = 0:i_max using the Dixon-Mood method's notation. 
 
    i = 1; 
 
    sum_mi = 0;   % Initialize summations used in Dixon-Mood statistics. 
    sum_imi = 0; 
    sum_iimi = 0; 
     
    for k = (- kmin + 1):(kmax - kmin + 1)    
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        if sumfail > sumlive 
            mi = live(k); 
        else 
            mi = fail(k); 
        end 
        sum_mi = sum_mi + mi; 
        sum_imi = sum_imi + h*mi; 
        sum_iimi = sum_iimi + h*h*mi; 
    end 
  
    if sumfail > sumlive 
        mu(i) = stress0 + step*(sum_imi/sum_mi + 0.5); 
    else 
        mu(i) = stress0 + step*(sum_imi/sum_mi - 0.5); 
    end 
    uglyterm = (sum_mi*sum_iimi - sum_imi*sum_imi)/(sum_mi^2); 
    if uglyterm > 0.3 
        sigma(i) = 1.62*step*(uglyterm + 0.029); 
    else 
        sigma(i) = 0.53*step; 
    end 
 
Pstar = P 
Sstar = S 
sigmaDM = sigma  % D-M std dev. 
sigmaSV = sigma*(n/(n-3))  % Svensson-Loren std dev. 
sigmaPO = 0.97*sigma*(n/(n-3))*((1.2*sigma/step)^0.55)   % Pollak-corrected std dev. 
ratio1 = sigmaDM/step 
ratio2 = sigmaPO/sigmaSV 

 

Bootstrap Controller (bootcontrol.m) 

This code was used to set the staircase parameters and define the staircase results used for 

a bootstrap analysis.  The program uses the bootsim.m code to perform the actual 

staircase analysis for each bootstrap iteration.  Note that bootcontrol.m is the command 

the user must type to run the bootstrap algorithm, not bootsim.m (which is just called by 

bootcontrol.m internally). 

 
% Purpose:  Perform staircase study with bootstrap. 
 
clear all; 
alpha = 0.05;   % Significance level used for confidence intervals. 
 
% Specify staircase parameters: 
initstress = 400; 
step = 6.5; 
n = 12; 
 
% Specify staircase results: 
Pstar = [0 0.333 0.667 1];      % P data from lowest to highest stress level. 
Sstar = [380.5 387 393.5 400];  % S data from lowest to highest stress level. 
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i = 1; 
while i <= 5000 
    bootsim; 
    i = i + 1; 
end 
 
sigmaBT = mean(sigma)       % Dixon-Mood. 
sigmaBT_SV = mean(sigma2)   % Svensson-Loren. 
sigmaBT_PO = mean(sigma3)   % Pollak correction. 

 

Bootstrap Simulator (bootsim.m) 

This code is called just a function called by bootcontrol.m to perform a single iteration of 

the bootstrap algorithm.  The program is not explicitly run but is called by bootcontrol.m 

to perform the required analysis.  Note that Pollak correction constants are hardcoded 

based on the number of specimens. 

 
% Purpose:  Generate a simulated staircase test using bootstrap. 
 
clear P S x stresses result stresslevel count fail live k; 
 
% "offset" corresponds to the number of steps up the initial stress level is from 
% the lowest stress level for which P-S data is available. 
 
offset = round((initstress-Sstar(1))/step); 
index = offset + 1;  % Sets the initial index for P-S data. 
 
% Simulate a staircase test based on these parameters. 
    
% This portion generates a random FLS and compares it to current stress 
% level to determine if the specimen failed or survived.  If it failed, the 
% stress level is reduced.  If it survived, the stress level is increased. 
 
stress = initstress;   % Initial stress level for staircase test. 
sumfail = 0;   % Initialize number of failures to zero.     
sumlive = 0;   % Initialize number of survivals to zero.  
for j = 1:n   % "j" corresponds to number of specimens. 
    x(j) = rand;   % Random number. 
    stresses(j) = stress;  % Stress at which specimen j was tested. 
    if x(j) <= Pstar(index) 
        result(j) = 1;   % Specimen failed. 
        sumfail = sumfail + 1; 
        stress = stress - step; 
        index = index - 1; 
    else 
        result(j) = 0;   % Specimen survived. 
        sumlive = sumlive + 1; 
        stress = stress + step; 
        index = index + 1; 
    end 
end 
 
% This portion finds the stress corresponding to i = 0 using the Dixon-Mood 
% notation.  This stress level is dependent on whether most specimens failed 
% (then it is the lowest stress level corresponding to a survival) or 
% survived (then it is the lowest stress level corresponding to a failure). 
     
    stress0 = 1.0e+12;   % Initialize stress0 to outrageously high number. 
    if sumfail <= sumlive   
        for j = 1:n 
            if (result(j) == 1) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
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        end 
    else    
        for j = 1:n 
            if (result(j) == 0) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    end 
     
%  This portion determines the number of occurrences and failures at each 
%  stress level.  Note that the index identifying stress level must be 
%  adjusted so that all vector indices are >= 1 as required by MATLAB. 
%  Data for P-S plot are also generated. 
 
    kmax = 0;   % Maximum stress level tested relative to stress0. 
    kmin = 0;   % Minimum stress level tested relative to stress0. 
    for j = 1:n   % Determines the max and min stress levels. 
        stresslevel(j) = round((stresses(j) - stress0)/step); 
        if stresslevel(j) > kmax 
            kmax = stresslevel(j); 
        elseif stresslevel(j) < kmin 
            kmin = stresslevel(j); 
        end 
    end 
    for k = 1:(kmax - kmin + 1) 
        count(k) = 0;   % Initialize count of occurrences at each level. 
        fail(k) = 0;    % Initialize count of failures at each level. 
        live(k) = 0;    % Initialize count of survivals at each level. 
    end 
    for j = 1:n   % Count number of stress level occurrences and failures. 
        adjstresslevel = stresslevel(j) - kmin + 1;  % Adjusted to be >= 1. 
        count(adjstresslevel) = count(adjstresslevel) + 1; 
        if result(j) == 1 
            fail(adjstresslevel) = fail(adjstresslevel) + 1; 
        else 
            live(adjstresslevel) = live(adjstresslevel) + 1;         
        end 
        P(adjstresslevel) = fail(adjstresslevel)/count(adjstresslevel); 
    end 
    for k = 1:(kmax - kmin + 1) 
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        S(k) = stress0 + h*step; 
    end 
     
%  This portion calculates mean and standard deviation of FLS for each 
%  iteration using the statistics of the Dixon-Mood method.  Note that this 
%  analysis assumes a normal distribution for FLS.  Also, note that the 
%  summation over k = (- kmin + 1):(kmax - kmin + 1) corresponds to the 
%  summation over i = 0:i_max using the Dixon-Mood method's notation. 
     
    sum_mi = 0;   % Initialize summations used in Dixon-Mood statistics. 
    sum_imi = 0; 
    sum_iimi = 0; 
     
    for k = (- kmin + 1):(kmax - kmin + 1)    
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        if sumfail > sumlive 
            mi = live(k); 
        else 
            mi = fail(k); 
        end 
        sum_mi = sum_mi + mi; 
        sum_imi = sum_imi + h*mi; 
        sum_iimi = sum_iimi + h*h*mi; 
    end 
  
    if sumfail > sumlive 
        mu(i) = stress0 + step*(sum_imi/sum_mi + 0.5); 
    else 
        mu(i) = stress0 + step*(sum_imi/sum_mi - 0.5); 
    end 
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    uglyterm = (sum_mi*sum_iimi - sum_imi*sum_imi)/(sum_mi^2); 
    if uglyterm > 0.3 
        sigma(i) = 1.62*step*(uglyterm + 0.029); 
    else 
        sigma(i) = 0.53*step; 
    end 
 
% CORRECTION TERMS. 
sigma2(i) = sigma(i)*(n/(n-3));  % Svensson-Loren. 
sigma3(i) = 1.04*sigma(i)*(n/(n-3))*((1.2*sigma(i)/step)^0.78);  % Pollak. 

 

Advanced Staircase Simulator with Iteration (advstrat.m) 

This code allows the user to analyze a desired sequence of iterative staircases with or 

without bootstrapping.  The parameters of each staircase within each iteration may be 

varied.  The user can set the parameter setting within the code to adjust the starting 

parameters (initial stress and step) and the parameters within each subsequence (number 

of specimens, step, bootstrapping).  This is the command typed by the user, while the 

programs advstair.m, advcalcs.m, and advboot.m are called by this program internally. 

 
% Run a simulation of a complete staircase test program strategy. 
% R. Pollak, AFIT/ENY, Nov 2004. 
 
clear all; clc; 
 
% Set variable values. 
 
truedist = 1;       % True underlying FLS distribution, 1 = normal. 
truemean = 400;     % True mean of underlying FLS distribution. 
truestdv = 1;       % True std dev of underlying FLS distribution. 
initmean = 400;     % Initial estimate for mean. 
initstdv = 0.5;      % Initial estimate for std dev. 
nv = [8 0 0 0 0 0 0 0 0 0 0 0];  
                    % Number of specimens for each subtest (up to 12). 
sv = [0.5 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7];   
                    % Step sizes (/s) for each subtest. 
boot = [1 0 0 0 0 0 0 0 0 0 0 0];   
                    % If boot(t) = 1, then bootstrap for subtest t. 
mtot = 500;        % Number of total iterations to simulate. 
mboot = 500;       % Number of iterations used for bootstrap routine. 
 
% Index "i" corresponds to simulation iteration (1 through mtot). 
% Index "t" corresponds to subtest number (1 through subs). 
% Index "j" corresponds to specimen number (1 through nplus(t)). 
% Index "b" corresponds to bootstrap iteration (1 through mboot). 
% A failure is denoted by result = 1 (success is result = 0). 
 
subs = 0; 
for c = 1:12 
    if nv(c) > 0 
        subs = subs + 1;  % Quick loop to calculate # of subtests used. 
    end 
end 
for i = 1:mtot 
    initstress = initmean; 
    stdv = initstdv; 
    nplus(i,:) = [0 0 0 0 0 0 0 0 0 0 0 0]; 
    ntot(i) = 0; 
    for t = 1:subs 
        step = stdv * sv(t);   % Sets step size for subtest staircase. 
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        n = nv(t);             % Sets specimen size for subtest staircase. 
        advstair;              % Runs a simulated subtest staircase. 
        n = j;                 % Updates n based on simulated subtest. 
        nplus(i,t) = j;        % Stores actual n for each subtest.  
        advcalcs;              % DM method to calculate mu and sigma.      
        musub(i,t) = mu;       % Mean estimate. 
        sigmasub(i,t) = sigma; % Std dev estimate. 
        if boot(t) == 1 
            Pstar = P;         % Stores P vector for use in bootstrap. 
            Sstar = S;         % Stores S vector for use in bootstrap.  
            advboot;           % Bootstrap used to improve sigma estimate. 
            sigmabootsub(i,t) = newsigma; % Updated std dev estimate. 
            stdv = newsigma;   % Sets std dev estimate for next subtest.  
        else 
            sigmabootsub(i,t) = 0;  
            stdv = sigma;      % Sets std dev estimate for next subtest.  
        end 
        initstress = mu;       % Sets mean estimate for next subtest.  
        ntot(i) = ntot(i) + nplus(i,t); 
    end 
end 
 
% Display results. 
 
for t = 1:subs 
    disp(['RESULTS FOR SUBTEST #', int2str(t)]); 
    disp(['  Mean of sigma = ', num2str(mean(sigmasub(:,t)))]); 
    disp(['  StDv of sigma = ', num2str(std(sigmasub(:,t)))]); 
    disp(['  Mean of sigmaboot = ', num2str(mean(sigmabootsub(:,t)))]); 
    disp(['  StDv of sigmaboot = ', num2str(std(sigmabootsub(:,t)))]); 
    disp(['  Median of sigmaboot = ', num2str(median(sigmabootsub(:,t)))]); 
    disp(['  95% LCB of sigmaboot = ', num2str(prctile(sigmabootsub(:,t),5))]); 
    disp(['  95% UCB of sigmaboot = ', num2str(prctile(sigmabootsub(:,t),95))]); 
end 
disp(['AVG SPECIMENS: ', num2str(mean(ntot(:)))]);          
 
% Save results to file. 
 
fid = fopen('output2.dat','w+');   % Opens output data file. 
for i=1:mtot 
    for t=1:subs 
        fprintf(fid,'%7.4f \t', musub(i,t)); 
        fprintf(fid,'%7.4f \t', sigmasub(i,t)); 
        fprintf(fid,'%7.4f \t', sigmabootsub(i,t)); 
    end 
    fprintf(fid,' \n'); 
end 
fclose(fid);   % Close output data file.        

 

Staircase Simulator (advstair.m) 

This code is used by the advstrat.m program to create a virtual staircase based on 
specified parameter settings. 

 
clear fls stresses result; 
 
stress = initstress;   % Initial stress level for staircase test. 
sumfail = 0;   % Initialize number of failures to zero.     
sumlive = 0;   % Initialize number of survivals to zero.  
done = 0;      % Used to indicate when to end staircase. (All specimens  
               % tested with at least one failure and one success, and we 
               % have P = 0 and P = 1 stress levels). 
j = 1;         % Specimen counter. 
while done == 0 
    if truedist == 1 
        fls(j) = normrnd(truemean,truestdv); 
    else 
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        disp(['ERROR:  User did not select a supported distribution.']); 
    end 
    stresses(j) = stress;  % Stress at which specimen j was tested. 
    if stress > fls(j) 
        result(j) = 1;   % Specimen failed. 
        sumfail = sumfail + 1; 
        stress = stress - step; 
    else 
        result(j) = 0;   % Specimen survived. 
        sumlive = sumlive + 1; 
        stress = stress + step; 
    end 
    if and(j >= n, and(sumlive > 0, sumfail > 0)) 
        if or(and(stresses(j) == min(stresses), result(j) == 1), and(stresses(j) == 
max(stresses), result(j) == 0)) 
            j = j + 1; 
        else 
            done = 1; 
        end 
    elseif and(j >= n, or(sumlive == 0, sumfail == 0)) 
        j = j + 1; 
    else 
        j = j + 1; 
    end 
end 

 

Staircase Calculator (advcalcs.m) 

This code is used by the advstrat.m program to compute the fatigue strength statistics 
using the Dixon-Mood method based on the staircase data simulated by the advstair.m 
routine.  Note that Pollak correction constants are hardcoded based on the number of 
specimens. 

 

clear j stresslevel P S count fail live k; 
 
 
    stress0 = 1.0e+12;   % Initialize stress0 to outrageously high number. 
    if sumfail <= sumlive   
        for j = 1:n 
            if (result(j) == 1) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    else    
        for j = 1:n 
            if (result(j) == 0) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    end 
     
%  This portion determines the number of occurrences and failures at each 
%  stress level.  Note that the index identifying stress level must be 
%  adjusted so that all vector indices are >= 1 as required by MATLAB. 
%  Data for P-S plot are also generated. 
 
    kmax = 0;   % Maximum stress level tested relative to stress0. 
    kmin = 0;   % Minimum stress level tested relative to stress0. 
    for j = 1:n   % Determines the max and min stress levels. 
        stresslevel(j) = round((stresses(j) - stress0)/step); 
        if stresslevel(j) > kmax 
            kmax = stresslevel(j); 
        elseif stresslevel(j) < kmin 
            kmin = stresslevel(j); 
        end 
    end 
    for k = 1:(kmax - kmin + 1) 
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        count(k) = 0;   % Initialize count of occurrences at each level. 
        fail(k) = 0;    % Initialize count of failures at each level. 
        live(k) = 0;    % Initialize count of survivals at each level. 
    end 
    for j = 1:n   % Count number of stress level occurrences and failures. 
        adjstresslevel = stresslevel(j) - kmin + 1;  % Adjusted to be >= 1. 
        count(adjstresslevel) = count(adjstresslevel) + 1; 
        if result(j) == 1 
            fail(adjstresslevel) = fail(adjstresslevel) + 1; 
        else 
            live(adjstresslevel) = live(adjstresslevel) + 1;         
        end 
        P(adjstresslevel) = fail(adjstresslevel)/count(adjstresslevel); 
    end 
    for k = 1:(kmax - kmin + 1) 
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        S(k) = stress0 + h*step; 
    end 
     
%  This portion calculates mean and standard deviation of FLS for each 
%  iteration using the statistics of the Dixon-Mood method.  Note that this 
%  analysis assumes a normal distribution for FLS.  Also, note that the 
%  summation over k = (- kmin + 1):(kmax - kmin + 1) corresponds to the 
%  summation over i = 0:i_max using the Dixon-Mood method's notation. 
     
    sum_mi = 0;   % Initialize summations used in Dixon-Mood statistics. 
    sum_imi = 0; 
    sum_iimi = 0; 
     
    for k = (- kmin + 1):(kmax - kmin + 1)    
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        if sumfail > sumlive 
            mi = live(k); 
        else 
            mi = fail(k); 
        end 
        sum_mi = sum_mi + mi; 
        sum_imi = sum_imi + h*mi; 
        sum_iimi = sum_iimi + h*h*mi; 
    end 
  
    if sumfail > sumlive 
        mu = stress0 + step*(sum_imi/sum_mi + 0.5); 
    else 
        mu = stress0 + step*(sum_imi/sum_mi - 0.5); 
    end 
    uglyterm = (sum_mi*sum_iimi - sum_imi*sum_imi)/(sum_mi^2); 
    if uglyterm > 0.3 
        sigma = 1.62*step*(uglyterm + 0.029); 
    %    sigma = 1.3*sigma*(n/(n-3))*((1.2*sigma/step)^1.72); % Pollak correction. 
        sigma = sigma*(n/(n-3));                            % Svensson correction. 
    else 
        sigma = 0.53*step; 
     %   sigma = 1.3*sigma*(n/(n-3))*((1.2*sigma/step)^1.72); % Pollak correction. 
        sigma = sigma*(n/(n-3));                            % Svensson correction. 
    end 

 

Staircase Bootstrap (advboot.m) 

This code is used by the advstrat.m program to run the bootstrap algorithm based on the 
staircase data simulated by the advstair.m routine.  Note that Pollak correction constants 
are hardcoded based on the number of specimens. 
 
for b = 1:mboot 
 
clear P S x stresses result stresslevel count fail live k; 
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% "offset" corresponds to the number of steps up the initial stress level  
% is from the lowest stress level for which P-S data is available. 
 
offset = round((initstress-Sstar(1))/step); 
index = offset + 1;  % Sets the initial index for P-S data. 
 
% Simulate a staircase test based on these parameters. 
    
% This portion generates a random FLS and compares it to current stress 
% level to determine if the specimen failed or survived.  If it failed, the 
% stress level is reduced.  If it survived, the stress level is increased. 
 
stress = initstress;   % Initial stress level for staircase test. 
sumfail = 0;   % Initialize number of failures to zero.     
sumlive = 0;   % Initialize number of survivals to zero.  
for j = 1:n   % "j" corresponds to number of specimens. 
    x(j) = rand;   % Random number. 
    stresses(j) = stress;  % Stress at which specimen j was tested. 
    if x(j) <= Pstar(index) 
        result(j) = 1;   % Specimen failed. 
        sumfail = sumfail + 1; 
        stress = stress - step; 
        index = index - 1; 
    else 
        result(j) = 0;   % Specimen survived. 
        sumlive = sumlive + 1; 
        stress = stress + step; 
        index = index + 1; 
    end 
end 
 
% This portion finds the stress corresponding to i = 0 using the Dixon-Mood 
% notation.  This stress level is dependent on whether most specimens failed 
% (then it is the lowest stress level corresponding to a survival) or 
% survived (then it is the lowest stress level corresponding to a failure). 
     
    stress0 = 1.0e+12;   % Initialize stress0 to outrageously high number. 
    if sumfail <= sumlive   
        for j = 1:n 
            if (result(j) == 1) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    else    
        for j = 1:n 
            if (result(j) == 0) & (stresses(j) < stress0) 
                stress0 = stresses(j); 
            end 
        end 
    end 
     
%  This portion determines the number of occurrences and failures at each 
%  stress level.  Note that the index identifying stress level must be 
%  adjusted so that all vector indices are >= 1 as required by MATLAB. 
%  Data for P-S plot are also generated. 
 
    kmax = 0;   % Maximum stress level tested relative to stress0. 
    kmin = 0;   % Minimum stress level tested relative to stress0. 
    for j = 1:n   % Determines the max and min stress levels. 
        stresslevel(j) = round((stresses(j) - stress0)/step); 
        if stresslevel(j) > kmax 
            kmax = stresslevel(j); 
        elseif stresslevel(j) < kmin 
            kmin = stresslevel(j); 
        end 
    end 
    for k = 1:(kmax - kmin + 1) 
        count(k) = 0;   % Initialize count of occurrences at each level. 
        fail(k) = 0;    % Initialize count of failures at each level. 
        live(k) = 0;    % Initialize count of survivals at each level. 
    end 
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    for j = 1:n   % Count number of stress level occurrences and failures. 
        adjstresslevel = stresslevel(j) - kmin + 1;  % Adjusted to be >= 1. 
        count(adjstresslevel) = count(adjstresslevel) + 1; 
        if result(j) == 1 
            fail(adjstresslevel) = fail(adjstresslevel) + 1; 
        else 
            live(adjstresslevel) = live(adjstresslevel) + 1;         
        end 
        P(adjstresslevel) = fail(adjstresslevel)/count(adjstresslevel); 
    end 
    for k = 1:(kmax - kmin + 1) 
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        S(k) = stress0 + h*step; 
    end 
     
%  This portion calculates mean and standard deviation of FLS for each 
%  iteration using the statistics of the Dixon-Mood method.  Note that this 
%  analysis assumes a normal distribution for FLS.  Also, note that the 
%  summation over k = (- kmin + 1):(kmax - kmin + 1) corresponds to the 
%  summation over i = 0:i_max using the Dixon-Mood method's notation. 
     
    sum_mi = 0;   % Initialize summations used in Dixon-Mood statistics. 
    sum_imi = 0; 
    sum_iimi = 0; 
     
    for k = (- kmin + 1):(kmax - kmin + 1)    
        h = k + kmin - 1;  % Readjusts stress level back to 0:kmax scale. 
        if sumfail > sumlive 
            mi = live(k); 
        else 
            mi = fail(k); 
        end 
        sum_mi = sum_mi + mi; 
        sum_imi = sum_imi + h*mi; 
        sum_iimi = sum_iimi + h*h*mi; 
    end 
  
    if sumfail > sumlive 
        muboot(b) = stress0 + step*(sum_imi/sum_mi + 0.5); 
    else 
        muboot(b) = stress0 + step*(sum_imi/sum_mi - 0.5); 
    end 
    uglyterm = (sum_mi*sum_iimi - sum_imi*sum_imi)/(sum_mi^2); 
    if uglyterm > 0.3 
        sigmaboot(b) = 1.62*step*(uglyterm + 0.029); 
    %    sigmaboot(b) = 1.3*sigmaboot(b)*(n/(n-3))*((1.2*sigmaboot(b)/step)^1.72); % 
Pollak correction. 
        sigmaboot(b) = sigmaboot(b)*(n/(n-3));                                   % 
Svensson correction. 
    else 
        sigmaboot(b) = 0.53*step; 
    %    sigmaboot(b) = 1.3*sigmaboot(b)*(n/(n-3))*((1.2*sigmaboot(b)/step)^1.72); % 
Pollak correction. 
        sigmaboot(b) = sigmaboot(b)*(n/(n-3));                                   % 
Svensson correction. 
    end 
     
end 
 
newmu = mean(muboot); 
newsigma = prctile(sigmaboot,60); % Adjust this term to view the effect of various 
percentile settings on computed bootstrap results. 

 

Identical Iteration Program (iterations.m) 

This code was used to analyze the effects of iterating staircase results such that a large 
series of identical staircases were run, each using the results of the previous staircase as 
new starting points (initial stress equal to mean fatigue strength and step based on 
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previous standard deviation estimate).  The program used fls_sim_calcs.m to provide 
simulated staircase data and statistical analysis. 

 
% Purpose:  Run a series of staircase sim cases based on prev results. 
% Required: fls_sim_calcs.m -- runs staircase sim for each case. 
 
clear all; clc; 
 
truedist = 1; 
truemean = 400; 
truestdv = 5; 
n = 15; 
series = 100; 
startmean = 400; % initial mean estimate 
startstdv = 2.5;  % initial stdv estimate 
ks = 1.70;        % step size constant 
 
% Set simulation parameters. 
 
m = 1;       % Number of iterations used for each simulation case. 
graphics = 0;   % 0 = graphics off, 1 = case summary, 2 = each iteration. 
                % Unless running only a couple cases, turn graphics off. 
trouble = 0;  % Troubleshooting: 0 = off, 1 = on. 
alpha = 0.05;   % Significance level used for confidence intervals. 
maxtime = 1000; % Sets the max time before simulation times out. 
 
for t = 1:1000 
    initstress = startmean;   
    step = ks*startstdv;          
    for s = 1:series 
        fls_sim_calcs; 
        initstress = mu; 
        step = ks*sigma;    
    end 
    mu_v(t) = mu; 
    sigma_v(t) = sigma; 
end 
 
% At this point, we have an R x 10 matrix of output data, where R is the 
% number of completed cases.  Each row corresponds to a simulation case 
% with the mean, std dev, median, LCB, and UCB for both mu and sigma.   
% Here, mu is the calculated FLS mean and sigma is the calculated FLS std  
% dev using the Dixon-Mood method.  LCB and UCB are the lower and upper 
% confidence bounds. 
 
mu_bar = mean(mu_v) 
mu_LCB = prctile(mu_v, 5) 
mu_UCB = prctile(mu_v, 95) 
sigma_bar = mean(sigma_v) 
sigma_LCB = prctile(sigma_v, 5) 
sigma_UCB = prctile(sigma_v, 95) 
 
fid = fopen('output1.dat','w+');   % Opens output data file. 
for t=1:1000 
    fprintf(fid,'%7.4f \n',sigma_v(t)); 
end 
fclose(fid);   % Close output data file. 
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APPENDIX E.  STAIRCASE SIMULATION DATA FOR MEAN 
FATIGUE STRENGTH USING THE DIXON-MOOD METHOD 

This appendix shows the results of the mean fatigue strength analysis for the simulation-

based staircase investigation. 

The first part of this sub-investigation centered on the effect of starting stress on 

calculated mean fatigue strengths using the Dixon-Mood method.  As discussed in 

Chapter III, there are already adequate methods for accounting for offset starting stresses 

(i.e., initial stress level differs from the mean fatigue strength).   These methods include 

those of Brownlee et al [21], Dixon [26], and Little [42].  Nonetheless, the capability of 

the Dixon-Mood method of starting stress on mean fatigue strength was analyzed.  These 

validation simulations used an underlying Normal(μ = 400,σ = 5) fatigue strength 

distribution.  The number of specimens varied from 6 to 200 specimens, with the step 

size held constant as 1σ .  Three levels of starting stress were used:  μ (the true mean), 

μ + 2σ (2 steps above true), and μ - 2σ (2 steps below true).  Each test point was 

simulated for 1000 iterations. 

Figure 92 shows the mean for fatigue strength mean (i.e., DMμ ) over the 1000 

simulations at each point, and Figure 93 shows the standard deviation for fatigue strength 

mean (i.e., σμDM ) over the 1000 simulations.  As one would expect, the fatigue strength 

estimates are slightly high when the starting stress is too high, and slightly low when 

starting too low; and as more specimens are used, the dependence on starting stress 

becomes negligible.  Also, the variance in fatigue strength mean is less when starting near 

the true mean rather than two steps above or below.  Again, this effect is reduced as more 

specimens are used.  It should be noted that even with as few as 6 specimens and an 

offset starting stress, the Dixon-Mood method provides quite accurate estimates for 

fatigue strength mean.   
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Figure 92.  Effect of starting stress on calculated fatigue strength mean for a 
Normal(400,5) underlying fatigue strength distribution. 
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Figure 93.  Effect of starting stress on scatter of fatigue strength mean for a 
Normal(400,5) underlying fatigue strength distribution. 
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The next part of this sub-investigation analyzed the effect of step size on 

estimates for mean fatigue strength.  For these simulations, step size varied from 0.1σ to 

2.0σ.  The underlying distribution and the number of iterations remained unchanged from 

the previous sub-investigation.  Figure 94 shows the effect of step size on the point 

estimates of mean fatigue strength, whereas Figure 95 shows the scatter in these 

estimates.  These figures confirm that step size does not play a major role in mean fatigue 

strength estimates using the Dixon-Mood method, although scatter in mean fatigue 

strength estimates is reduced with the use of smaller steps (as one would expect since the 

data are thus more concentrated near the true mean value) or larger sample sizes.   

The bottomline of this analysis is that the mean fatigue strengths calculated by the 

Dixon-Mood method can be used without further modification (beyond the starting stress 

offset corrections already described).  Fatigue strength means calculated from staircase 

data are generally robust to step size and the number of specimens used. 
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Figure 94.  Effect of step size on calculated mean fatigue strength using the Dixon-
Mood method for a Normal(400,5) underlying fatigue strength distribution. 
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Figure 95.  Effect of step size on scatter of mean fatigue strength using the Dixon-
Mood method for a Normal(400,5) underlying fatigue strength distribution. 
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APPENDIX F.  SIMULATION RESULTS FOR STAIRCASE 
PARAMETER INVESTIGATION 

In this appendix, the detailed results for the staircase parametric analysis are displayed in 

detail for a number of the simulation runs.  Specifically, this appendix enumerates the 

results for the standard deviation bias analysis which is summarized in Chapter III (see 

Figure 25 and Figure 26).  The results for the following cases were simulated and 

summarized in Chapter III: 

• Step sizes ranged from 0.1σ to 2σ, where σ is the true standard deviation of the 

fatigue strength distribution.  Specifically, the following step sizes were used:   

s/σ = 0.1, 0.25, 0.5, 0.75, 1, 1.5, and 2. 

• Number of specimens ranged from 8 to 1000, with the following sample sizes:    

N = 8, 10, 12, 15, 20, 30, 50, 100, 1000. 

• Starting stress equaled the true mean fatigue strength in all cases. 

• True fatigue strength distribution was modeled as Normal(400,5) and 

Normal(400,15). 

• A total of 126 cases were simulated with 1000 replications each. 

In this appendix, only 21 of the 126 cases are shown in detail.  Namely, the results 

for each step interval for N = 8, 20, and 100 are shown for the Normal(400,5) 

distribution.  For each case, the histogram of the simulated standard deviation estimates 

using the Dixon-Mood method are shown along with a statistical summary of results. 



 

 214 

Case 1.  s/σ = 0.1, N = 8 specimens 
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Figure 96.  Histogram of staircase simulation results for 0.1σ step and 8 specimens. 

Table 34.  Summary statistics for simulation with 0.1σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.1125 
Standard deviation 0.1013 

1st percentile 0.0530 
5th percentile 0.0530 

10th percentile 0.0530 
50th percentile (median) 0.0857 

90th percentile 0.2567 
95th percentile 0.3287 
99th percentile 0.4727 
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Case 2.  s/σ = 0.25, N = 8 specimens 
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Figure 97.  Histogram of staircase simulation results for 0.25σ step and 8 specimens. 

Table 35.  Summary statistics for simulation with 0.25σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.2652 
Standard deviation 0.2362 

1st percentile 0.1325 
5th percentile 0.1325 

10th percentile 0.1325 
50th percentile (median) 0.1734 

90th percentile 0.5180 
95th percentile 0.6417 
99th percentile 1.1817 
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Case 3.  s/σ = 0.5, N = 8 specimens 
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Figure 98.  Histogram of staircase simulation results for 0.5σ step and 8 specimens. 

Table 36.  Summary statistics for simulation with 0.5σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.4483 
Standard deviation 0.3014 

1st percentile 0.2650 
5th percentile 0.2650 

10th percentile 0.2650 
50th percentile (median) 0.2650 

90th percentile 0.7435 
95th percentile 1.0360 
99th percentile 1.6435 
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Case 4.  s/σ = 0.75, N = 8 specimens 
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Figure 99.  Histogram of staircase simulation results for 0.75σ step and 8 specimens. 

Table 37.  Summary statistics for simulation with 0.75σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.5770 
Standard deviation 0.3306 

1st percentile 0.3975 
5th percentile 0.3975 

10th percentile 0.3975 
50th percentile (median) 0.3975 

90th percentile 0.8705 
95th percentile 1.1152 
99th percentile 1.9252 
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Case 5.  s/σ = 1.0, N = 8 specimens 
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Figure 100.  Histogram of staircase simulation results for 1.0σ step and 8 specimens. 

Table 38.  Summary statistics for simulation with 1.0σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.6847 
Standard deviation 0.3175 

1st percentile 0.5300 
5th percentile 0.5300 

10th percentile 0.5300 
50th percentile (median) 0.5300 

90th percentile 1.1607 
95th percentile 1.1607 
99th percentile 2.0720 
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Case 6.  s/σ = 1.5, N = 8 specimens 
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Figure 101.  Histogram of staircase simulation results for 1.5σ step and 8 specimens. 

Table 39.  Summary statistics for simulation with 1.5σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9033 
Standard deviation 0.2950 

1st percentile 0.7950 
5th percentile 0.7950 

10th percentile 0.7950 
50th percentile (median) 0.7950 

90th percentile 1.2855 
95th percentile 1.6905 
99th percentile 1.7411 
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Case 7.  s/σ = 2.0, N = 8 specimens 

1 1.5 2 2.5
0

100

200

300

400

500

600

700

800

900

1000

Standard deviation (/sigma)

Fr
eq

ue
nc

y

 

Figure 102.  Histogram of staircase simulation results for 2.0σ step and 8 specimens. 

Table 40.  Summary statistics for simulation with 2.0σ step and 8 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 1.1094 
Standard deviation 0.2084 

1st percentile 1.0600 
5th percentile 1.0600 

10th percentile 1.0600 
50th percentile (median) 1.0600 

90th percentile 1.0600 
95th percentile 1.7140 
99th percentile 2.3215 
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Case 8.  s/σ = 0.1, N = 20 specimens 
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Figure 103.  Histogram of staircase simulation results for 0.1σ step and 20 
specimens. 

Table 41.  Summary statistics for simulation with 0.1σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.3000 
Standard deviation 0.2356 

1st percentile 0.0530 
5th percentile 0.0756 

10th percentile 0.0857 
50th percentile (median) 0.2367 

90th percentile 0.5944 
95th percentile 0.7811 
99th percentile 1.2171 
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Case 9.  s/σ = 0.25, N = 20 specimens 
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Figure 104.  Histogram of staircase simulation results for 0.25σ step and 20 
specimens. 

Table 42.  Summary statistics for simulation with 0.25σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.5350 
Standard deviation 0.3629 

1st percentile 0.1325 
5th percentile 0.1717 

10th percentile 0.1917 
50th percentile (median) 0.4208 

90th percentile 1.0117 
95th percentile 1.2517 
99th percentile 1.9065 
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Case 10.  s/σ = 0.5, N = 20 specimens 
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Figure 105.  Histogram of staircase simulation results for 0.5σ step and 20 
specimens. 

Table 43.  Summary statistics for simulation with 0.5σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.6992 
Standard deviation 0.3745 

1st percentile 0.2650 
5th percentile 0.2650 

10th percentile 0.3151 
50th percentile (median) 0.6391 

90th percentile 1.1835 
95th percentile 1.4635 
99th percentile 2.0017 

 

 



 

 224 

Case 11.  s/σ = 0.75, N = 20 specimens 
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Figure 106.  Histogram of staircase simulation results for 0.75σ step and 20 
specimens. 

Table 44.  Summary statistics for simulation with 0.75σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.7654 
Standard deviation 0.3451 

1st percentile 0.3975 
5th percentile 0.3975 

10th percentile 0.3975 
50th percentile (median) 0.6952 

90th percentile 1.2016 
95th percentile 1.4446 
99th percentile 2.0339 
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Case 12.  s/σ = 1.0, N = 20 specimens 
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Figure 107.  Histogram of staircase simulation results for 1.0σ step and 20 
specimens. 

Table 45.  Summary statistics for simulation with 1.0σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.8387 
Standard deviation 0.3324 

1st percentile 0.5300 
5th percentile 0.5300 

10th percentile 0.5300 
50th percentile (median) 0.7598 

90th percentile 1.2782 
95th percentile 1.4870 
99th percentile 2.0995 
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Case 13.  s/σ = 1.5, N = 20 specimens 
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Figure 108.  Histogram of staircase simulation results for 1.5σ step and 20 
specimens. 

Table 46.  Summary statistics for simulation with 1.5σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9621 
Standard deviation 0.2678 

1st percentile 0.7950 
5th percentile 0.7950 

10th percentile 0.7950 
50th percentile (median) 0.7950 

90th percentile 1.1640 
95th percentile 1.6257 
99th percentile 2.1111 
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Case 14.  s/σ = 2.0, N = 20 specimens 
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Figure 109.  Histogram of staircase simulation results for 2.0σ step and 20 
specimens. 

Table 47.  Summary statistics for simulation with 2.0σ step and 20 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 1.1309 
Standard deviation 0.1736 

1st percentile 1.0600 
5th percentile 1.0600 

10th percentile 1.0600 
50th percentile (median) 1.0600 

90th percentile 1.4224 
95th percentile 1.5196 
99th percentile 1.6816 
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Case 15.  s/σ = 0.1, N = 100 specimens 
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Figure 110.  Histogram of staircase simulation results for 0.1σ step and 100 
specimens. 

Table 48.  Summary statistics for simulation with 0.1σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.7428 
Standard deviation 0.3473 

1st percentile 0.2466 
5th percentile 0.3198 

10th percentile 0.3757 
50th percentile (median) 0.6590 

90th percentile 1.2156 
95th percentile 1.3759 
99th percentile 1.9084 
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Case 16.  s/σ = 0.25, N = 100 specimens 
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Figure 111.  Histogram of staircase simulation results for 0.25σ step and 100 
specimens. 

Table 49.  Summary statistics for simulation with 0.25σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.8706 
Standard deviation 0.2902 

1st percentile 0.4078 
5th percentile 0.4872 

10th percentile 0.5573 
50th percentile (median) 0.8280 

90th percentile 1.2442 
95th percentile 1.3656 
99th percentile 1.8111 
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Case 17.  s/σ = 0.5, N = 100 specimens 
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Figure 112.  Histogram of staircase simulation results for 0.5σ step and 100 
specimens. 

Table 50.  Summary statistics for simulation with 0.5σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9293 
Standard deviation 0.2297 

1st percentile 0.4971 
5th percentile 0.5837 

10th percentile 0.6420 
50th percentile (median) 0.9062 

90th percentile 1.2288 
95th percentile 1.3506 
99th percentile 1.5714 
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Case 18.  s/σ = 0.75, N = 100 specimens 
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Figure 113.  Histogram of staircase simulation results for 0.75σ step and 100 
specimens. 

Table 51.  Summary statistics for simulation with 0.75σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9493 
Standard deviation 0.2040 

1st percentile 0.5642 
5th percentile 0.6488 

10th percentile 0.6877 
50th percentile (median) 0.9222 

90th percentile 1.2153 
95th percentile 1.2998 
99th percentile 1.5236 
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Case 19.  s/σ = 1.0, N = 100 specimens 
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Figure 114.  Histogram of staircase simulation results for 1.0σ step and 100 
specimens. 

Table 52.  Summary statistics for simulation with 1.0σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9606 
Standard deviation 0.1899 

1st percentile 0.5816 
5th percentile 0.6794 

10th percentile 0.7143 
50th percentile (median) 0.9533 

90th percentile 1.2270 
95th percentile 1.2899 
99th percentile 1.4677 
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Case 20.  s/σ = 1.5, N = 100 specimens 
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Figure 115.  Histogram of staircase simulation results for 1.5σ step and 100 
specimens. 

Table 53.  Summary statistics for simulation with 1.5σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 0.9797 
Standard deviation 0.1593 

1st percentile 0.7950 
5th percentile 0.7950 

10th percentile 0.7950 
50th percentile (median) 0.9608 

90th percentile 1.1824 
95th percentile 1.2640 
99th percentile 1.4400 
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Case 21.  s/σ = 2.0, N = 100 specimens 
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Figure 116.  Histogram of staircase simulation results for 2.0σ step and 100 
specimens. 

Table 54.  Summary statistics for simulation with 2.0σ step and 100 specimens. 

Statistic for the simulated standard 
deviation distribution  

(using Dixon-Mood method) 

Value 
(/σ) 

Mean 1.0996 
Standard deviation 0.0739 

1st percentile 1.0600 
5th percentile 1.0600 

10th percentile 1.0600 
50th percentile (median) 1.0600 

90th percentile 1.1632 
95th percentile 1.2811 
99th percentile 1.4139 
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APPENDIX G.  SIMULATION RESULTS FOR STAIRCASE 
BOOTSTRAPPING ANALYSIS 

In this appendix, the bootstrap results for several representative staircase scenarios are 

presented.  For each case, the mean results and the standard deviation are given for each 

statistic taken from the simulated distribution of results.   

 

Scenario #1:  15-specimen staircase with step 1σ.  Data taken from 4-level tests only. 
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Figure 117.  Mean standard deviation estimates for 15-specimen staircase test with 
step 1σ resulting in 4 stress levels. 
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Figure 118.  Standard deviation of standard deviation estimates for 15-specimen 
staircase test with step 1σ resulting in 4 stress levels. 
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Scenario #2:  20-specimen staircase with step 0.75σ.  Data taken from 4-level tests only. 
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Figure 119.  Mean standard deviation estimates for 20-specimen staircase test with 
step 0.75σ resulting in 4 stress levels. 
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Figure 120.  Standard deviation of standard deviation estimates for 20-specimen 
staircase test with step 0.75σ resulting in 4 stress levels. 
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APPENDIX H.  PROBABILISTIC STRESS-LIFE CURVES USING THE 
RANDOM FATIGUE LIMIT MODEL BASED ON SIMULATED DATA 

In this appendix, some of the P-S-N curves used for the test design investigation of 

Chapter V are presented.  Only three runs for each strategy/scenario combination are 

detailed.  These scenarios are specified as: 

1. Scenario #1:  An S-N curve with a linear region in the lower-cycle region 

which gradually transitioned to a fatigue limit between 105 and 107 cycles.  

The fatigue strength distribution for this scenario was modeled as normal with 

increasing standard deviation as the stress decreased.  (Figure 59) 

2. Scenario #2:  A more curved S-N behavior with less evidence of a fatigue 

limit before 109 cycles.  The fatigue strength distribution was again modeled 

as normal with increasing standard deviation as stress decreased.  (Figure 61) 

3. Scenario #3:  A bilinear S-N model which exhibited a more distinct transition 

from the sloped lower-cycle behavior to the flat fatigue-limit behavior starting 

near 106 cycles.  Unlike the previous two scenarios, a skewed fatigue strength 

distribution was used, with the larger percentile differences towards lower 

stresses.  Standard deviation again increased as stress decreased.  (Figure 63) 

For each run of each scenario, three test design strategies were simulated.  These 

strategies include (1) a traditional staircase approach, (2) a balanced strategy of four 

stress levels with three specimens each, and (3) an adaptive staircase approach with 

variable step size depending on outcomes.  Each test design used 12 specimens. 

The following pages show the P-S-N plots computed using best-fit RFL model 

analysis using the simulated data sets.   
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Figure 121.  Scenario #1 using traditional staircase. 
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P-S-N Plot (RFL Model)
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Figure 122.  Scenario #1 using balanced strategy.
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P-S-N Plot (RFL Model)
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Figure 123.  Scenario #1 using adaptive approach.
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P-S-N Plot (RFL Model)
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Figure 124.  Scenario #2 using traditional staircase.
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P-S-N Plot (RFL Model)
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Figure 125.  Scenario #2 using balanced strategy.
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P-S-N Plot (RFL Model)
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Figure 126.  Scenario #2 using adaptive approach.
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P-S-N Plot (RFL Model)
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Figure 127.  Scenario #3 using traditional staircase.
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P-S-N Plot (RFL Model)
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Figure 128.  Scenario #3 using balanced strategy.
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Figure 129.  Scenario #3 using adaptive approach.
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